
 Educational Software Cooperative 
The Best of the ESC Newsletter 

Programming Answers to Your Questions 
                  Animation             
      ESC Background 

            
      Data Compression             
      The ESC CD-ROM 

            
      Mouse Support             
      Joining ESC 

            
      Processing Interrupts 

Work and Business 
Education             
      Tracking Your Progress 

            
      Standards for Software             
      Self-Publishing 

            
      Writing on the Computer             
      Shareware Incentives 

            
      Make it Meaningful             
      Multimedia 

            
      Do Kids Want to Learn?             
      Distributing Online 

            
      Let's Finish It             
      Back in Business 

                        
      Is Shareware Dead? 

Tips and Tricks             
      Magazine Reviews 

            
      CD-ROM Autorun             
      Helping Each Other 

            
      Designing With Color             
      Intro to the Internet 

            
      Saving Disk Space 

            
      The Next Century 

Copyright 1996 Educational Software Cooperative Inc. All rights reserved. 





Print This Form 

EDUCATIONAL SOFTWARE COOPERATIVE MEMBERSHIP APPLICATION 

YES! I'D LIKE TO JOIN NOW: 

___Basic $25    ___Contributing $50    ___Supporting $100 ___Lifetime $1000 
(Amounts are in U.S. dollars.    Membership is renewable each April.) 

Name:                    ____________________________________________________ 

Company Name:    ____________________________________________________ 

Address:              ____________________________________________________ 

                              ____________________________________________________ 

                              ____________________________________________________ 

Email:                  ____________________________________________________ 

Phone:                  ____________________________________________________ 

Fax:                      ____________________________________________________ 

BBS:                      ____________________________________________________ 

PLEASE CHECK ONE: 

____ Author / Developer    (Do not include software with your application) 

____ Software Publisher / Vendor / Distributor 

____ BBS Sysop / Online Provider 
                                                                                                                                  MAIL TO: 
____ Teacher / Administrator 
                                                                                    Educational Software Cooperative 
____ Parent                                                                      11846 Balboa Blvd, Suite 226 
                                                                                                        Granada Hills CA 91344 
____ Other:___________________________                                                                  USA 

            ____Check      ____Money Order    --    ___________Amount Enclosed 
            Prices shown are in U.S. dollars. We regret that we cannot accept 
            checks drawn on non-U.S. banks. 

Credit card orders:      ____Visa        ____MasterCard        ____American Express 

Credit card number:____________________________________ Exp. Date:________ 

Name exactly as shown on the card:________________________________________ 

Signature:________________________________________________________________ 



Credit card payments may be placed by phone or fax to Pik a Program: 
                                                                                                            voice: 212-598-4939 
                                                                                                            fax: 212-228-5879 

If you received this form after December 1996, please contact us for updated information. 



 EDUCATIONAL SOFTWARE COOPERATIVE 

Educational software is one of the most popular and fastest-growing categories of software. 
In 1992, the Educational Software Cooperative (ESC) was founded by Andy Motes, author of 
the award-winning "School Mom" program. 

Incorporated in 1994, ESC is a nonprofit organization whose purposes are to advance the 
mutual benefit of authors, publishers, dealers and distributors of educational software; to 
voluntarily cooperate formally and informally with each other to better develop, advertise, 
distribute and sell educational software; and to provide the public with information regarding
the benefits, uses, and availability of educational software. 

Software users, educators, developers, publishers, distributors, and others work together to 
promote these goals. 

A wide variety of educational shareware titles for both children and adults are available on a 
CDROM,CD-ROM which can be purchased through many of the Author and Vendor members. 
We expect to produce a new CD approximately every six months. 

We currently publish a bimonthly newsletter containing articles written by ESC members and
associates, along with product reviews, tips and suggestions for better ways to write and 
market software and discussions of educational issues. In this newsletter, you'll also find a 
list of new program additions and updates. 

Since 1993, the ESC has had its own section on CompuServe where its members can 
communicate directly with each other and the public. You can participate in this section 
whether or not you are a member of ESC. Just enter GO EDFORUM at any CompuServe 
prompt, and join us in Section 2. 

We now have our own Home Page on the World Wide Web: 
http://members.aol.com/edsoftcoop 

Our activities have included participation in trade association events in Indianapolis and 
Atlanta. This year, we will present the annual People's Choice Award for Best Educational 
Shareware at the Shareware Industry Conference in Scottsdale. We work with other 
organizations on issues, such as software ratings, that affect the industry as a whole. 

All officers are unpaid and elected by the membership. As with any organization, there are 
costs involved, requiring a membership fee to be collected on a yearly basis. Basic annual 
membership dues are $25, and include a newsletter subscription and one copy of the CD-
ROM. Contributing ($50), Supporting ($100), and Lifetime ($1000) members receive 
additional CDs and special recognition for their important contributions to our ongoing 
efforts. Membership is renewable each April. 



      Membership Application 

      ESC CD-ROM 

      ESC Bylaws 

      Main Menu 



JOIN    NOW! 

 
Don't put if off any longer! It's never too late to start your ESC Membership and participate 
in our ongoing activities: 
      Our own Home Page on the World Wide Web, with links to ESC members' FTP sites and 

home pages for this service: http://members.aol.com/edsoftcoop 

      A "Members Only" Home Page with special information and links of special interest to 
ESC members 

      Our Member of the Month project, featuring a different ESC member's work each month 

      The ESC CD-ROM is better than ever, with more educational categories, and room for 
members' non-educational applications, too 

      Sponsorship of the People's Choice award for Best Educational Shareware, presented at 
the annual Shareware Industry Conference (SIC) 

      Our annual meeting and luncheon at SIC 

      Our bimonthly newsletter 

      Our discussion section and library on CompuServe: GO EDFORUM 

      Cooperation with other associations on issues that affect us all, such as software ratings 

      In the works - an online software catalog 

      Your chance to interact with members who share your interests in meeting the special 
challenges of writing, distributing, and locating educational and "edutainment" software 

      Membership Application 

      ESC CD-ROM 

      Main Menu 



ESC    CD-ROM         
The ESC CD-ROM and many other fine CD-ROM shareware collections are available from: 

Most Significant Bits 
37207 Colorado Avenue 
Avon, OH 44011 
Voice: 216-934-1397, 800-755-4619 
Fax:      216-934-1386 



WHAT    IS    SHAREWARE?         
Shareware is an exciting marketing method that allows you to try top-quality software before
paying the author. The small fee you pay to a disk vendor covers only the duplication and 
distribution costs, and permits you to evaluate these programs. If you continue to use a 
program, you must send the author an additional payment, which may entitle you to 
technical support, a printed manual, bonus programs and more. Your payment supports the 
authors, enabling them to continue writing newer and better Shareware programs for you. 



ESC OFFICERS 

Rosemary West, President 74774.403@compuserve.com 
John Gallant, Vice President 76170.2251@compuserve.com 
Richard Hart, Treasurer 71222.3536@compuserve.com 
Bert Fischer, Secretary 70233.1315@compuserve.com 
Andy Motes, Board Member 73757.1111@compuserve.com 



BYLAWS    OF    EDUCATIONAL    SOFTWARE    COOPERATIVE,    INC. 
ARTICLE 1: OBJECT OF CORPORATION 

Section 1. The Educational Software Cooperative (the "Corporation") is created for the 
following purposes, to the extent that these are not inconsistent with the New Jersey 
Nonprofit Corporation Law and the Corporation's Articles of Incorporation: 

To advance the mutual benefit of authors, publishers, dealers and distributors of educational 
software; to voluntarily cooperate formally and informally with each other to better develop, 
advertise, distribute and sell our educational software; to provide the public with information
regarding the benefits, uses, and availability of educational software. 

Section 2. The purposes of the Corporation may not be altered except as an amendment to 
these bylaws, which shall require a two- thirds majority vote at an annual or special meeting 
of the Membership. 

Section 3. The Corporation is not organized, nor shall it be operated, for pecuniary gain or 
profit, and it does not contemplate the distribution of gains, profits or dividends to its 
Members and is organized solely for nonprofit purposes. The property, assets and profits and
net income of the Corporation are irrevocably dedicated to the purposes set forth in Section 
1 hereof, and no part of its profits or income shall ever inure to the benefit of any Director, 
Officer or Member thereof or to the benefit of any private person. Nothing in this section 
shall be interpreted to prevent the Corporation from hiring and paying employees, nor shall 
the Corporation be prevented from paying any individuals or organizations for professional 
services, or from purchasing materials needed to conduct the Corporation's business. 

ARTICLE 2: MEMBERSHIP 

Section 1. The Membership of the Corporation shall consist of those persons who have 
signed the Certificate of Incorporation as incorporators together with all persons who are 
hereafter received in or elected to Membership as hereinafter provided. 

Section 2. The criteria for Membership in the Corporation shall be: 

            (a) That the Member agrees to uphold the purposes of the Corporation as defined in 
the bylaws. 

            (b) Members must pay and remain current in the payment of dues, fees, and 
assessments to continue as Members. 

            (c) Memberships belong to individuals, not organizations, and are not transferable. 

Section 3. The criteria for Membership in the Corporation may not be altered except as an 
amendment to these bylaws, which shall require a two- thirds majority vote at an annual or 
special meeting of the Membership. 

Section 4. It shall be the obligation and responsibility of each Member to advise the Board of 
Directors if the Member no longer qualifies as a Member. A Member shall be dismissed from 
Membership upon the failure of the Member to meet any Membership criterion, or because 
of the commission of an act believed by the Board of Directors to be detrimental to the best 
interests of the Corporation. In the case of a dismissal for a detrimental act, the Member 
shall first be given the opportunity to answer such charges before a meeting of the Board or 
the Membership Committee. If the Board of Directors votes to cancel a Member's 



Membership, they shall provide thirty days' written notice of such cancellation to the 
Member. In the case of dismissal for failure to pay dues, fees or assessments, the Member 
may be automatically reinstated upon payment of the amount in question. In the case of 
dismissal for any other reason, the Membership may vote to reinstate the Member by 
majority vote at the next special or annual Membership meeting. A member who has been 
dismissed for any reason other than failure to pay dues or fees may not reapply for 
membership within one year of the dismissal. 

All Membership cancellation actions shall require a majority vote of the Board of Directors. 
This authority may not be delegated. 

Section 5. A Member may resign from Membership at any time and shall be required to do so
if such Member is unable or unwilling to comply with Membership requirements. 

Section 6. The Board of Directors may establish a Membership Committee to which it may 
delegate any responsibility which the Board of Directors may have regarding Membership. A 
Member may appeal to the full Board from any adverse decision of the Membership 
Committee. 

Section 7. Dues, fees and assessments shall be established by the President and ratified by 
majority vote of the Membership at any meeting. 

Section 8. Membership may be held by individuals, companies, partnerships or corporations.
If the membership is held by a company, partnership or corporation, one person from that 
organization shall represent it, participate in meetings, and vote. 

ARTICLE 3: GOVERNMENT 

Section 1. The general management of the affairs of the Corporation shall be vested in the 
Board of Directors who shall be elected as provided in the bylaws. Members of the Board of 
Directors must be Members of the Corporation. 

Section 2. There shall initially be four (4) Members of the Board of Directors. The Board of 
Directors or the Membership may set the size of the Board of Directors, to take effect at the 
next election for the Members of the Board of Directors. A majority of the Board of Directors 
may not be employed by the same organization and/or by organizations that substantially 
control the employing organizations of other Board Members. 

Section 3. The term of office of each Member of the Board of Directors shall be two (2) years,
or until the Member's successor is elected. 

Section 4. Members of the Board of Directors shall be eligible for reelection. 

Section 5. The Board of Directors shall meet prior to each Annual Meeting of the 
Membership, and may meet from time to time as deemed necessary by the Members of the 
Board. The Board may choose to hold its meetings on an electronic forum such as 
HTTP,CompuServe or such other forum as may be selected by the Board of Directors. All 
Directors must have access to the electronic forum that is the site of such electronic 
meetings. 

ARTICLE 4: MEETINGS OF MEMBERS 

Section 1. Annual Meetings of the Members of the Corporation shall be held once each year 



at a time to be fixed by the Board of Directors. Final and official notice of the time and place 
of the Annual Meeting shall be provided to each Member not less than ten nor more than 
fifty days prior thereto and shall specify the matters to be discussed and voted upon. No 
business may come before an Annual Meeting which is not so specified. The board may 
choose to hold the Annual Meeting electronically. Members may be present at an Annual 
Meeting in person or by written or electronic proxy. 

Section 4. Special Meetings of the Members of the Corporation may be called from time to 
time by the Board of Directors, or by at least 10% of the Membership acting in concert, or by
at least 15 Members acting in concert, or by the Secretary as specified in Article 6. Members
shall be deemed to have acted in concert for purposes of the preceding sentence if they 
have provided written notice to the Secretary of the request for a Special Meeting, such 
request to specify the matters to be addressed at such meeting. Notice of the time and 
place of a Special Meeting shall be provided to each Member not less than ten nor more than
fifty days prior thereto and shall specify the matters to be discussed and voted upon at such 
Special Meeting. No business may come before a Special Meeting which is not so specified. 
Special Meetings may be conducted on an electronic forum or bulletin board system ("BBS") 
chosen by the Board of Directors. 

Section 3. At any meeting of the Members, each Member shall have one vote. Members of 
the Board of Directors shall not have the right to vote on matters concerning the manner in 
which they have exercised their functions, except they may vote on any matter concerning 
the description, enlargement or circumscription of their functions. 

Section 4. At all meetings, a quorum shall consist of those persons who have cast their votes
at such meeting. 

Section 5. Action at any meeting of Members may be taken by a simple majority vote of a 
quorum, except as to any requirements for a super-majority vote specifically set forth in 
these bylaws. 

Section 6. Members who are unable to attend an Annual Meeting may designate a proxy by 
written notice to the Secretary on the matters on the agenda, appointing the Board of 
Directors to cast votes for such Member in the manner specified in such proxy. 

Section 7. The President shall chair all meetings. In the absence of the President, the chair 
shall pass to the remaining Officers of the Corporation, in the order they are named in Article
7. The meetings shall be governed by Roberts Rules of Order, Revised (1979 edition) except 
where, in the opinion of the chair, a limitation or enhancement of electronic conferencing 
makes certain of those rules either unworkable or unnecessary. 

Section 8. Any resolution which is defeated at any meeting may not be reintroduced or 
placed on the agenda for any meeting within six (6) months following defeat of such 
resolution. 

ARTICLE 5: PROCEDURE FOR MEETINGS 

Section 1. Only the meeting chair may call for an end of discussion and for a vote on a 
proposal. In the case of an electronic meeting, such call shall constitute the beginning of the 
"voting period". 

Section 2. In the case of an electronic meeting, the voting period for any issue or election 
shall be 168 hours (seven days). Should the BBS which is used for the meeting be 
unavailable to the general Membership for six or more continuous hours during the voting 



period, the voting period shall be extended for an additional 24 hours. 

Section 3. In the case of an electronic meeting, in lieu of voting on the BBS, a Member may 
send a written vote to the Secretary or other designated person and it shall be counted if 
received before or during the voting period. In the case of a non- electronic meeting, in lieu 
of voting in person, a Member may send a written or electronic vote to the Secretary or 
other designated person and it shall be counted if received prior to the call for a vote. 

ARTICLE 6: ELECTION OF DIRECTORS AND OFFICERS 

Section 1. The Directors of the Corporation shall be elected at the Annual Meeting. 

Section 2. No less than fifteen (15) days prior to the Annual Meeting, the President shall 
appoint a Nominating Committee for the purpose of nominating candidates for the Board of 
Directors. The names of the nominees shall be included with the notice of the Annual 
Meeting sent to members as provided in Article 4, Section 1. Additional nominations by the 
membership will be accepted from the floor during the Annual Meeting. The requirements of 
this section will not be in effect for the first Annual Meeting of the Corporation 

Section 3. Following the election of Directors, the Directors shall elect from the Members a 
President, a Vice-President, a Secretary and a Treasurer. 

Section 4. If a vacancy occurs among the Board of Directors, a majority or the remaining 
Directors shall appoint a new Directors to fill the vacancy until the next annual or special 
meeting of the Membership. 

Section 5. If a vacancy occurs among the Officers, the vacancy shall be filled by the Board of
Directors from the Membership. 

Section 6. In the event of a tie vote by the Board of Directors for any Officer, a vote will be 
cast by the first of the President, Vice President, Secretary, or Treasurer that is not a member
of the Board of Directors. 

ARTICLE 7: DUTIES OF OFFICERS 

Section 1. The President may establish committees and shall appoint heads of such 
committees. The President shall act as Chief Executive Officer of the Corporation, to 
coordinate the activities of the Officers and the committees and shall provide guidance and 
leadership in the day-to-day operation and functioning of the Corporation. In the absence of 
the Treasurer, the President shall perform the Treasurer's duties. 

Section 2. In the absence of the President, the Vice-President shall perform the President's 
duties. In the absence of the Secretary, the Vice-President shall perform the Secretary's 
duties. 

Section 3. The Secretary shall keep the minutes of all meetings of the Members and of the 
Board of Directors, shall keep a register of the Members, and shall provide notices of 
meetings of the Members. The Secretary shall sign the record of meetings. 

Section 4. The Treasurer shall keep accurate books of account, prepare and present periodic 
operating statements and balance sheets to the Board of Directors, and deposit and 
withdraw funds of the Corporation under the direction of the Board of Directors. 



Section 5. Any Officer may be removed from office for cause by a two-thirds majority of 
either the Board of Directors or the Membership at any meeting called for that purpose. 

ARTICLE 8: DUTIES AND POWERS OF THE BOARD OF DIRECTORS 

Section 1. The Board of Directors shall have general charge and management of the affairs, 
funds and property of the Corporation. They shall have full power and it shall be their duty to
carry out the purposes of the Corporation according to its charter and bylaws; to determine 
whether the conduct of any Member is detrimental to the welfare of the Corporation and to 
fix the penalty for such misconduct or any violation of the charter or bylaws; to employ 
personnel for the carrying out of the Corporation's objectives; and to make rules for the 
conduct of the Members. 

Section 2. Any action required or permitted to be taken by the Board of Directors may be 
taken without a meeting if all Members of the Board consent in writing to the adoption of a 
resolution authorizing the action. 

Section 3. Meetings of the Board may be called and governed in such manner as the Board 
may from time to time determine. 

Section 4. A quorum of the Board shall ordinarily consist of 66% of the Members of the 
Board. In the case of an electronic meeting, if a motion has been open for voting for one 
week, a quorum shall consist of 50% of the Board for the purpose of that particular motion. 

Section 5. Any Member of the Board of Directors may be removed from office for cause by 
two-thirds majority of the Membership at any meeting called for that purpose. 

ARTICLE 9: INDEMNIFICATION; INSURANCE 

Section 1. The Corporation shall indemnify and hold harmless from all costs and expenses 
(including reasonable attorneys fees) of any person who was or is an elected or appointed 
Officer or director of the Corporation and is threatened to be or has been made a party to an
action, claim, or other proceeding arising out of such person's performance, purported 
performance, or failure to perform, any duties on behalf of the Corporation. Such 
indemnification shall not extend to liabilities arising out of a person's gross negligence, 
misfeasance or willful misconduct. 

Section 2. The Board of Directors is authorized to obtain Directors and Officers liability 
insurance to shield such persons from liability for all costs, expenses and attorneys fees 
arising out of the conduct of their duties as Directors and Officers, except for liabilities 
arising out of their gross negligence, misfeasance or willful misconduct. 

ARTICLE 10: DISSOLUTION 

Section 1. The Corporation can be dissolved only upon a two- thirds majority vote of a 
quorum present at any Annual or Special Meeting. On dissolution or winding up of the 
Corporation its assets remaining after the payment of, or provision for the payment of, all 
debts and liabilities shall be distributed as determined by the Board of Directors of the 
Corporation. If the Corporation holds any assets outside the state of its incorporation they 
shall be disposed of as required by law. 



ARTICLE 11: NOTICES AND COMMUNICATIONS 

Section 1. All notices or communications required or permitted hereunder may be sent by 
first-class mail or by electronic means. Such notices or communications shall be deemed to 
be delivered upon deposit with the United States Postal Service, or upon submission via the 
electronic means designated for such purpose. All notices and communications shall be 
addressed to each person at the last known address shown in the corporate records. 

ARTICLE 12: AMENDMENTS 

Section 1. These bylaws may be amended only by a majority vote of those voting at an 
Annual or Special Meeting provided that notice of the purpose of any proposed amendment 
has been stated in the call for the meeting. 

ARTICLE 13: FISCAL YEAR 

Section 1. The fiscal year of the Corporation shall be as determined by the Board of 
Directors. 

ARTICLE 14: SEAL AND CORPORATE EMBLEM 

Section 1. The Corporation may have a seal as adopted by the Board of Directors. The Seal 
may be used by the Officers to attest to the documents of the Corporation. 

Section 2. The Corporation may have a corporate emblem as adopted by the Board of 
Directors. The corporate emblem may be used by Members under guidelines established by 
the Board of Directors. 

ARTICLE 15: AUTHORIZATIONS 

Section 1. Contracts. The Board of Directors may authorize any Officer, or may authorize any
Officer to delegate such authority, to enter into any contract or execute and deliver any 
instrument in the name of and on behalf of the Corporation. Such authority may be general 
or confined to specific circumstances. 

Section 2. Checks, Drafts, Etc. The Board of Directors may authorize any Officer, or may 
authorize any Officer to delegate such authority, to issue checks, drafts, or other orders for 
the payment of money, notes or other evidence of indebtedness in the name of the 
Corporation. 

Section 3. Deposits. All funds of the Corporation shall be deposited from time to time to the 
credit of the Corporation in such banks, trust companies or other depositories that the Board
of Directors may select. 

Section 4. Gifts. The Board of Directors may accept on behalf of the Corporation any 
contribution, gift, bequest or device for the general purposes or for any specific purpose of 
the Corporation. 

      Membership Application 

      ESC Background Information 



      Main Menu 



    Visit our ESC Home Page on the World Wide Web: 
                http://members.aol.com/edsoftcoop 

      On CompuServe, chat with us in Section 2 of 
                EDFORUM 



DO    KIDS    WANT    TO    LEARN? 
Bob McElwain 

 It's been said that somewhere along about age eight, nine or ten, kids lose all interest in 
learning. Nuts! It fades, though. And sometimes it's hard to find even a trace. But it's there. 
In every kid in the land. The trick is to latch on to it. If you can, neat things happen. 
Conversely, if you don't, you're wasting time. There'll be no involvement on the part of the 
kid. Hence nothing of significance learned. 

As a teacher I've got to get it done. Fan a spark into a flame, so to speak. Then, of course, 
I've got to make sure my students get good stuff. Useful skills and ideas. As an author of 
educational software, I face an additional challenge, for my "student" is not mandated by 
state law to attend my "class." 

Authors know kids are bombarded with slick polished presentations. When thinking of pre-
schoolers, Sesame Street comes to mind. Some thus feel they must compete at this level for
the kid's attention. I'm don't think it's so. 

A sharp, jazzy opening may be just the ticket. But this sort of thing does not need to be 
sustained to any significant degree. Certainly it must not be the whole of it. Else we're 
kidding all concerned by leading them to believe that learning is one grand video game after
another. 

In the evaluations of educational software done by "PC Magazine", fun is a heavily weighted 
factor. I personally object to the word when applied to learning. Enjoyment is good; it 
happens now and then. Practical and/or rewarding are better. But I surely don't feel fun is as 
significant a factor as some do. 

On more than one occasion, I've been forced to pretty much ignore a group of students for 
extended periods. Initially, all slack off. Then, one by one, most will get back to assigned 
tasks. And if there's been good solid introduction, and the subject is perceived by the 
students as practical or necessary, the goofing off is minimal. 

I am convinced that given an appropriate introduction, which includes a demonstration of 
the worthiness of the subject, most kids are interested in learning. While the degree varies, 
of course, interest does exist. And it can be sustained without bells and whistles. In fact, 
slick tricks can hinder, rather than help. 

Vol 4, No 5, November 1995        
      Main Menu 



STANDARDS    FOR    EDUCATIONAL    SOFTWARE 
Marilyn Brown 

 Since one of the goals of the ESC is to develop standards for educational software, I would 
like to contribute a summary of standards that were developed in Canada by the Council of 
Ministers of Education for evaluating educational software (Software Evaluation Criteria for 
educational computer software evaluation, 1985). This may save a lot of time by providing a 
framework for discussion. 

Objectives: 

The questions to be answered are: 

* Are the objectives of the program clearly stated? 
* Are the objectives appropriate to the target audience and the medium? 
* After satisfactory completion of the program will the objectives be fulfilled? 

Pedagogical Content: 

The questions to be answered are: 
* Is the pedagogical content appropriate to the target audience? 
* Has the pedagogical content been effectively designed? 

1. Scope (Breadth, Range) 
a. Is the scope appropriate to the target audience? 
b. Are the objectives appropriate to the medium? 

2. Sequence 
a. Is the content sequence appropriate to the target audience? 
b. Is the content sequence effectively designed? 

3. Depth 
a. Is the content depth appropriate to the target audience? (amount of instruction and 
practice appropriate, content level relevant to the interests and learning level) 
b. Is the content depth effectively designed? (definitions and explanations available, 
appropriate amount of detail, sufficient number of examples) 

4. Accuracy 
a. Is the content accurate? 
b. Has a simulation model been accurately represented? 

5. Bias 
a. Does the content contain biases? (ethnic/racial references, social class references, 
violence, age portrayals, political references, social role references, stereotyping, 
unfair/inaccurate judgments) 

6. Readability 
a. Is the general readability/reading level of the content appropriate for the target 
audience? 



Instructional Format: 
The questions to be answered are: 

* Is the instructional format appropriate to the target audience? 
* Have the capabilities of the computer been effectively utilized? 

7. Student Interaction 
a. Is the interaction appropriate to the target audience? (can students interact easily, are
there sufficient instructions, is the program tolerant in accepting unexpected inputs) 
b. Does the program contain a method of inquiry that promotes learning? (does student 
learn through manipulation of content rather than by passively reviewing facts) 
c. Is the interaction effective? (does the interaction promote learning, is there sufficient 
interaction) 

8.    Questioning Technique 
a. Is the questioning technique appropriate for the target audience? 
b. Is the questioning technique effective? (questions appropriate to the content, 
questions effectively randomized where necessary) 

9. Feedback 
a. Are the form and content of the feedback appropriate to the target audience? 
b. Are user inputs accurately evaluated as right or wrong? Does the program distinguish 
between the wrong answer and the wrong format? 
c. Does learning take place regardless of the student's response? 
d.Is feedback non-threatening, immediate, positive, motivational and user sensitive? 
e. Are cues/prompts used after a wrong response? 
f. Is corrective feedback provided? 
g. Is the feedback relevant to the user's history of responses? 
h. Is negative feedback unnecessarily attractive? 
i. Can the user/teacher control the feedback where appropriate? 
j. Is quantitative (summary) feedback provided? 
k. Is quantitative feedback effective? 

10. Evaluation 
a. Are pre-tests/post-tests appropriately present/absent? 
b. If present, are pre-tests/post-tests effectively designed? 

11. Branching 
a. Are branches appropriately present/absent? 
b. If present, are branches appropriate to the target audience? 
c. If present, are branches effective in accommodating individual differences? 

12. Types of Control (Program, Teacher, User) 
a. Does the user/teacher have an appropriate amount of control over the program? 
b. Are the control features which are present effectively designed? 

Technical Design: 

The questions to be answered are: 

* Is the technical design appropriate to the target audience? 
* Have the technical capabilities of the computer been effectively utilized? 

13. Screen Displays 



a. Are the character size, font and case appropriate to the target audience? 
b. Are the screen displays effective? (free from grammar, spelling, punctuation and 
hyphenation mistakes, amount of material presented at one time, material clear and 
easy to read, special features used appropriately, transition from display to display 
smooth, well paced and unobtrusive, appropriate amount of time for user to read and 
absorb the information) 

14. Colour, Graphics and Sound 
a. Is the use of colour, graphics and/or sound appropriate to the target audience? 
b. Are colour, graphics and/or sound used effectively? (add to the effectiveness of the 
instruction, can sound be controlled, is use of features motivational, do graphics portray 
intended object/idea, are quality and clarity appropriate) 

15. Ease of Use 
a. Can the intended user easily and independently operate the program? (exit the 
program, return to the menu, move to another section, are instructions available at 
appropriate points and are they effective, is program reliable) 

Implementational Support: 

The question to be answered is: 

* How easy is it to use the software in the classroom? 

16. Ease of Implementation in the Classroom 
a. Are sufficient user/teacher support materials available? 
b. Are they effective? 
c. How difficult/easy is it to implement the software in the classroom? What additional 
demands are placed on the teacher's time to use the package and to operate it within a 
classroom setting? 

17. Management System 
a. Are there sufficient management functions available? 
b. Are they effective? (may include class lists, reports, prescription, diagnosis of 
student's weaknesses, security, capacity) 

Summary: 

18. Objectives 
a. Are the developer's objectives clearly stated? 
b. Are they appropriate to the target audience? 
c. Are they appropriate to the medium? 
d. Will satisfactory completion of the program result in fulfillment of the objectives? 

19. Summary Statement 
a. What are the major strengths and weaknesses of the software? 

Vol 3, No 5, October 1994        
      Main Menu 



MEANING-MAKING 
for    Class    Notes    and    Assigned    Readings 
 Richard A. Hart, PhD 

 Once the skill of meaning-making has been learned, a student becomes a self-correcting 
scholar, the joy of both parents and teachers.    A student who learns and reports with 
confidence.    A student who feels good about self and what he or she is doing.    A student 
who takes pride in practiced independent self-judgment.    A student who can handle school 
regardless of course, class, or special exam. 

Students can learn by memorizing what they are told or read. This is the concrete level of 
thinking, the "what you see is what you get" level of thinking.    Higher levels of thinking 
require the student to "do something" with this information or observation.    To question it.    
To make it meaningful.    Only the student can do this.    (A teacher can assist by creating the 
learning environment for meaning-making, but cannot interact with the internal process 
unless the student verbalizes in a one-on-one tutorial session.    The student talks.    The 
teacher listens.) 

Meaning-making extends over the full range of levels of thinking from random-guessing to 
formal problem-solving.    For class notes and assigned readings, it can be divided into four 
steps of list, describe, relate, and use. 

1.    Look through the notes or reading and make a LIST of "important" terms.    These are 
terms, of one or more words, that you feel you need to be familiar with to understand the 
assignment.    You can make two lists, terms you understand and can use, and those you do 
not. 

2.    Describe the action, thing, condition, or observation for which the term is a label.    This 
is the reverse of defining a term where you often end up with a meaningless, useless 
definition for an unknown term: a matched set of nonsense.    To use a term as a label, you 
must first describe the thing or condition, or be able to visualize it.    If you can claim actual 
or imaginary experience, you can then claim you know and can use the term as a label for 
that experience.    If not, you need to read the assignment again or other sources, or ask 
questions in class, at home, in laboratory, or on field observations. 

3.    Relate the terms by putting them into an order.    This is often called word mapping.    
Terms that are labels for similar things, that have the most to do with one another, are 
placed close together. 

4.    Use or express your understanding with appropriate limits. Writing a paragraph makes a 
good example.    The opening sentence can contain the description for the label.    Follow this 
with statements that set the limits of the description.    Close with a summary statement or 
example of what the term is a label for. 

The paragraphs can be reviewed to refresh memory, if needed, when test time comes.    
Things that are understood do not require the repeated memorization required by things 
that are just cold memorized (where the loss is about 50% every 24 hours). Experience and 
understanding are much more permanent. 

The sequence is: list, describe, relate and use ("do something with").    This sequence 
developed during empirical research on how to use computers to assist struggling students 



to become self-correcting scholars. 

The computer program, Expeditor, accepts a paragraph in the form of a question.    The 
opening sentence is the question stem.    The limiting statements (setting outside what is 
acceptable) are the wrong answers.    The summary statement becomes a second right 
answer. 

The program will accept a description as the question stem and the term as the right 
answer.    As your understanding grows, you can enter a second right answer and up to four 
wrong answers (limiting statements that are not acceptable). 

Is the computer needed?    No, but it sure helps.    Rather than review a paragraph that rests 
in one form on a sheet of paper, on a computer the information is presented in several ways 
including short answer, visualized, scientific, multiple-choice and multiple-guess.    Also what 
you have learned at several levels of thinking can be shared with others.      Disks can be 
traded or sold.    Question files can be up- and down-loaded onto computer bulletin boards 
(BBS). 

The final step in learning is putting it to the test.    Expeditor test bank files can be shared 
with classmates who can edit, add, and delete.    Your teacher can edit them for course tests 
which can be scored free-choice as well as the traditional forced-choice.    This will allow the 
computer program, Trainer, to score tests by quality and quantity.    Did you understand?    
Did the question perform well and at what level of thinking? 

The complete sequence is: list, describe, relate, use and verify. The self-correcting scholar 
does this mentally, internally.    For those needing to practice, a computer program adds 
needed animation and ease of information handling.    Students report they prefer the 
dynamic computer review to their static written notes. Expeditor is appropriate for any 
student, Junior High through College, who has access to an IBM or DOS compatible 
computer.    A printer is required for making practice or real paper tests. Question entry is 
best done with a group of three to five students using paper or a computer. 

Vol 1, No 5, December 1992        
      Main Menu 



WRITING    ON    THE    COMPUTER 
Rosemary West 

 I just received a sample copy (October-November 1994) of "Journal of the Electronic Writer",
the newsletter of the newly-formed Electronic Writing Users' Group (E/WUG). This non-profit 
organization was started by the same people who run W/PUG, the WordStar users' group. 
The group's purpose is to support the use of computers as writing tools, and the newsletter 
editors hope to provide a good mix of information about computer writing and writing per se.

This issue had 23 very readable pages. It included articles on grammar and punctuation, 
differences between PCs and typewriters, purchasing high-end computers, using hypertext, 
identifying authors' styles, speech writing, book design, software reviews, and assorted odds
and ends. 

Overall, I was favorably impressed. The newsletter held a lot of well-presented information. 
It would be of use when doing any kind of writing, from the Great American Novel to my next
VENDOR.DOC file. It's published six times yearly; membership is $27 in the US, US$32 in 
Canada and Mexico, US$37 internationally. For information or to join: E/WUG, PO Box 16-
1443, Miami FL 33116-1443. 

Vol 4, No 2, April 1995        
      Main Menu 



MAGAZINE    REVIEW 
Rosemary West 

 Two publications that I find very helpful are Inside Microsoft Windows and Inside Visual Basic
for Windows, both published by The Cobb Group. Although they seem pricey ($49 and $59 
per year for very slim magazines that sometimes contain only two or three articles per 
issue), they are filled with valuable technical information, tips and techniques that are 
extremely difficult to find elsewhere. 

As independent publications, they aren't afraid to discuss the flaws and limitations of the 
software. Because they contain little or no advertising, they avoid the suspicion, provoked by
many other computing magazines, that editorial content might be overly influenced by the 
advertising department. 

Inside Microsoft Windows is intended for end users rather than developers, but contains 
plenty of information that can help programmers, especially those who still find the 
transition from DOS to Windows uncomfortable. Recent articles included information on 
deciphering WIN.INI, sizing bitmaps in Paintbrush, creating PIFs for DOS applications, 
connecting to the Internet, and previews of Windows 95. 

Inside Visual Basic For Windows provides detailed information on language features, the use 
of controls, and programming techniques. Unlike some of the other magazines aimed at VB 
users, it rarely digresses into third-party add-ons or competing products, but generally sticks
to what can be done with VB (or VB Pro) out of the box. Recent articles included information 
on the 3DPanel control, extracting icons from other applications, aligning numbers, and 
handling databases. 

Both magazines contain plenty of screen shots and code listings. Without "dumbing down", 
they use plain English explanations, and provide the detail that is sorely lacking in the user's
manuals. I have only two real complaints: Sometimes an article from one magazine is 
duplicated in the other, and I wish each issue contained more articles. Subscription 
information can be obtained by calling 800-223-8720 or 502-493-3300. 

Vol 4, No 3, June 1995        
      Main Menu 



LET'S    FINISH    IT! 
Bob McElwain 

 People are well intended. Sure. There's exceptions. But most folks want to do the right 
thing. And do it well. Kids are like that. Like people, I mean. And doing well helps them feel 
better about themselves. Something most desperately need. 

Some authors don't think in such terms. For example, those who market fun and games as 
educational. My objection is not with the product. My concern is only with the labeling. It 
misleads both parents and kids. To the extent that either is led to believe that playing games
is educational, to that extent we're lying to them. And that's not nice. 

While learning is fun now and then, it's often not. Words such as rewarding and satisfying, 
better describe the high points. Words like drudgery and painful, come into play for the 
youngster who's struggling. Like with the multiplication table someone said should have 
been learned three years back. 

Obviously an author's got to sell. And with a profit. Else bankruptcy comes quickly. And if it's 
games that work, go for it. But if the product is labeled educational, we have quite a 
different set of responsibilities to both the parent (purchaser) and the kid (user). 

If the presentation is professional and the content leads to improved skills or new ideas that 
are useful, the responsibility to the parent has been fulfilled. Much more is needed, however,
before the same can be said for Johnny. 

First, he must know what needs to be done. And something of the why of it. For he needs to 
be convinced it's a "right" thing to do. Particularly tough, if it's something he won't want to 
do. Then he needs to be shown how to do it. Step by step, if necessary. And he needs to 
succeed at each step. For then the confidence goes up. And he's more willing to take the 
next one. 

And when he's finished, be sure he knows he has succeeded. For until he does, until he feels 
better about himself because of this accomplishment, we haven't finished. We've only a 
birthday cake with lighted candles. What we need to see is the glow in the eyes that comes 
from blowing them all out. 

Tough to prove the above adds to the bottom line. But satisfied kids are willing to move on. 
And parents who are determined to do what they can, are more likely to reach again for their
credit card and phone. 

As a personal aside, I've a comment about the multiplication table, long division, and other 
such topics. I'm fed up with those who sigh deeply and decry "the fact" that Johnny should 
have learned whatever, two years back. That he's hopelessly behind now. Nuts. A lot of 
really neat kids will never learn how to multiply. Let alone divide. To more rote drill, my 
answer's always been, "Let's get Johnny a calculator. I'll show him how to use it. Then we'll 
get on to some real mathematics." When was the last time you needed to divide 3.948 by 
6.23, accurate to three decimal places? If it happened, I bet you used a calculator. I do. 

Vol 4, No 5, November 1995        
      Main Menu 



ANIMATION    NOTES 
John Gallant 

 Many programs have objects that move around the screen.    A large percentage of those 
programs seem to move only one object at a time.    Moving multiple objects simultaneously 
is just an extension of moving a single object, as long as you keep track of what you are 
doing.    The following notes are an introduction to the theory involved (sorry, no code).    
These are aimed at people with programming experience but little experience in animation. 
Many of the authors in ESC already are using these techniques and may be able to suggest 
improvements or short cuts. 

In the simplest case, you would draw a background and then draw an object over it. To make
things easy, you could leave the background blank.    This is not going to make it in today's 
market.    Today you need an interesting background, multiple objects moving over that 
background, and possibly a foreground the objects pass behind.    On top of all that, you may
want to add a mouse cursor.    Quite a change, isn't it? But not really that hard. 

The things to be concerned about are: 
            1) keeping track of the order in which the objects are "stacked" on the screen 
            2) using fast graphic drivers 
            3) synchronizing to a system clock 

And if you are doing a lot of screen writing you should consider: 

            4) using two screens and toggling between them. 

Let me start with a description of a generalized approach to multiple objects and then give a
different approach used in many games. 

When you place an object on the screen you destroy what is under it. Remember that you do
not actually lift the object up and magically find the background still under it. For this reason
you must first save a copy of what is under the object you are about to draw.    To remove the
object you redraw the background where it was originally.    Assuming that you do not want 
to redraw the entire screen (bad idea), you will need to save just enough background to 
cover the object. 

Save the area under the object to memory.    If you are willing to work with direct video read 
and write, a good place to store the background is in unused video memory. In high 
resolution EGA mode there is some video memory between pages.    In low resolution EGA 
there is enough memory for four full pages of display.    Using video memory allows you to 
move all four color planes with one move instruction.    This will depend on the video mode 
you are using, and you should get a good book on graphics hardware. 

Once you have made a copy of what is under the first object, place the first object on the 
screen. 

Now it gets a little tricky.    If the objects can overlap, you now want to save the area under 
the second object (counting up from the background). The reason is that the area under the 
second object may include the first object.    This is necessary only if you want to treat the 
objects independently.    That is, if you want to be able to move the second object without 
having to worry about the existence of the first object (object-oriented software and all that).



Only you know your application. 

Continue up through the stack of objects until you get to the top.    Now place any stationary 
foreground objects as if they were just like the other moving objects.    In other words, you 
will need to save what is under them also.    Finally, add the cursor if you are using one. 

To do the next frame, start by replacing all the pieces of background in REVERSE order.    If 
you do not replace the background in the correct order, you will find you have little pieces of
objects accumulating on your screen. Very tacky! 

Once everything is replaced down to the original background, start building your stack of 
objects in their new positions.    There is a fair amount of bookkeeping involved, but the 
effect is worth it.    It is interesting and perhaps a bit depressing that the average computer 
user thinks the objects are actually just sliding around on the screen and has no idea of the 
actual mechanics. Perhaps it is an indication of a job well done when you can make it look so
easy. 

Now for the other, somewhat simpler approach.    This requires that all objects near any 
moving objects be repainted.    In the previous method, it was possible to repaint only the 
moving objects and any objects on top of them.    This may sound a little confusing so read 
how this second technique works and then think about what I just said. 

This method is used in many video games, such as Commander Keen.    (Author's disclaimer: 
I did not write Commander Keen, so any statements about how it works are pure 
speculation.    I have used both of the techniques described myself, though, so I know they 
work.) 

Create a bunch of cells of uniform size that will neatly cover the background and form a 
picture.    Think of it as a quilt or a tiled wall. Your background then consists of an array of 
integers pointing to a list of picture cells.    If you choose your cells carefully, you can reuse 
most of them.    There is an added advantage here in the reduction in graphic data that 
needs to be stored. 

If you know which section of your picture was disturbed, you just repaint the cells in that 
area.    Once the background is restored, you can start stacking your moving objects in their 
new positions.    You did not need to save anything under the objects; it was already 
available.    You only need to replace the cells in the area disturbed, not the entire screen.    
Again, store these cells in unused video memory if possible. 

These are two of many techniques.    I actually combine aspects of both, depending on the 
need.    You can probably find your own variations. 

That covers the first item in the list, keeping track of objects.    Now for the second item, fast 
graphic drivers.    When I first started 3-Ball Juggler I tried to use the drivers available in 
Borland's Turbo C 1.5.    I used getimage() to capture background and circle() to draw a 
rudimentary ball. This was on a 20MHz 386.    I realized immediately that this was not going 
to do.    I went out and bought a copy of Programmer's Guide to the EGA and VGA Cards by 
Ferraro (Addison-Wesley).    (You might also look at Programmer's Guide to PC and PS/2 Video
Systems by Richard Wilton). 

I also bought an assembler and started learning how to write assembly code for the IBM PC.   
Fortunately I had written a fair amount of assembly for other machines already.    With the 
new code I was able to move multicolor balls, hands, and forearms better than 10 times the 
speed of what I could do with just the available Borland library.    I am not suggesting you 
write your own assembly drivers, although many of you already have.    I am suggesting that 



you look around for a better library than the one that came with your compiler. 

If you write your own drivers, keep in mind the actual architecture of the hardware.    Take 
advantage of byte boundaries when writing to the screen. Make as few video memory 
accesses as possible.    Build your images in regular system memory before moving the 
images to the screen.    In other words, think about the hardware, not just the software. 

Now for the third item on the list.    Once you are done with your picture, it is time to wait.    
Yes, I said wait. If you just start repainting the screen again you will find that the speed of 
your animation is dependent on the speed of the computer you are using at the time.    
Slower machines will run too slow, fast machines will run too fast.    You will need to wait for 
the computer.    If you have very little to move and fast graphics software, you can wait for 
the video refresh. This comes about 70 times per second in EGA mode and makes for very 
smooth motion. 

If you would like to move more or bigger objects then you will need more time.    You can 
wait for the system clock.    This occurs about 20 times per second but is still fast enough to 
make pleasant looking animation.    Some major games with lots of screen activity move as 
slowly as 10 frames per second.    This is about the limit of realistic animation.    It will most 
likely require a special clock driver in your software to replace the clock interrupt.    I will 
leave the subject of clock interrupts to others.    There is public domain software available to 
do this on some bulletin boards.    Nels Anderson has a package called SOUNDPAS.ZIP on his 
Xevious board (508-875-3618) that generates sound in the background.    It uses the system 
clock and can also be used to synchronize video frame updates.    It is in Pascal.    He may 
also have a C version I translated from some of his code and sent him (SOUNDC.ZIP).    Also 
look in places like the libraries on Borland's CIS forum or other BBS's like Dan Linton's 
Software Creations (508-365-2359). 

FAIR WARNING: If you fool with the system interrupts or directly modify video hardware, you 
should really consider Control-Break and Critical Error handlers. If your program crashes 
because a disk drive door was open, your user would like the program to recover gracefully, 
not take the entire system down.    Code for this is also available in some advanced texts and
in some of the libraries mentioned above. 

Changing interrupts may also make your code into what Microsoft calls "poorly behaved 
applications [sic]".    That is their way of saying that their Windows environment cannot deal 
with it.    Try running a "poorly behaved application" like Duke Nukem or Crystal Caves from 
Windows. 

Finally, a few words about the last item on the list.    I mentioned using two screens if you 
have a lot of graphics to move.    The advantage of a second screen is that you can be 
painting one screen while you display the other.    When you are done you toggle screens, 
show the new one, and rework the old one.    If you have been confused so far, I would 
suggest you not try this yet.    It is amazing how much more confusing it is to deal with two 
screens -- much more that twice the work.    Start simply, and work your way up. My personal
experience has been that there is no substitute for actually trying a few things.    Go write 
some code. Good luck! 

Vol 1, No 4, October 1992        
      Processing Interrupts in C 

      Main Menu 



BITWISE    DATA    COMPRESSION 
Garrett Krueger 

 Despite the fact that computers are now coming with 4Mb, 8Mb, and sometimes more RAM, 
we still want to use as little memory as conveniently possible.    When programming under 
MS-DOS, it becomes even more important to keep memory usage low.    What is more, hard 
drives that we thought were huge a year and a half ago are now far too small.    Program 
code takes megabytes, and data sometimes takes twice that.    We want to reclaim much of 
this space.    At the same time, we do not want to sacrifice program performance.    How can 
we do this simultaneously? 

One could, of course, develop only small programs; but this is generally not in the best 
interest of the end user.    One could also use only small data structures, but again, this is 
inconvenient to the end user since many of the user conveniences require large amounts of 
memory from a programming standpoint. This is where data compression comes in. 

There are many data compression methods available.    Some forms are what I call "after-the-
fact" compression while others are "time-of-storage" compression.    "After-the-fact" is usually
used on stored files and generally has no effect on the quantity of RAM consumed during 
program execution.    "Time-of-storage" is used during program execution and can 
significantly reduce RAM consumption during program execution.    Before going into 
specifics, I would just like to mention a couple of "after-the-fact" methods.    This article, 
however, will focus on compression at the time of storage. 

Two common forms of "after-the-fact" compression relate to the elimination of redundant 
characters in files.    The first calls for reducing the number of NULL characters in files 
(especially executable code).    Primarily the number of sequential NULL characters is 
counted.    The characters are removed, and in their place two characters are stored.    The 
first stored character is usually a special one that signifies compression is about to follow.    
The second stored character is the number of NULLs that were removed.    You can see that 
more than two NULLs in a row would result in compression. 

The other variation of "after-the-fact" compression looks for any characters that are 
sequentially redundant.    To store this type of compression requires that three characters 
replace the sequence of redundant characters.    As in NULL compression, the first stored 
character alerts the compression routine that a compressed character is about to follow.    
The next two stored characters are 1) a single example of the redundant character and 2) 
the number of redundancies eliminated. 

While these methods can help reduce disk space used, they do not help to minimize RAM 
usage.    I wanted to mention them, however, since they can be useful in the proper 
situation.    As a more powerful alternative, "time-of-storage" compression does help 
decrease RAM usage during program execution and can also be used to reduce storage 
space required on disks. 

This type of compression can be made specific to the information being stored.    Because of 
this aspect, it can use the smallest possible storage option the computer has to offer -- the 
bit. Because working with bits offers a choice range of OFF or ON, encoding and decoding 
routines need not become too complex.    The best conveyance of these methods is by 
example, so here we go. 

Let us say that we wish to design a program to keep test scores for students.    There will be 



five tests during the quarter.    In standard programming we might create a string or array 
with five spaces to hold the five character values representing the five test grades (one 
letter grade, A, B, C, D, or F, for each of the five tests).    Since a single character requires 
one byte, this would take five bytes of memory for each student. 

Can we compact this usage?    Sure we can.    Instead let us create numerical constants to 
represent each of the five letter grades: A_Grade = 1; B_Grade = 2, and so on.    To store the 
grades, we will trade in the character string (five bytes) for a word-sized variable (two 
bytes).    Now we can store each grade using only 3 bits of the word variable.    This is 
because three bits can store a numerical value as high as 4+2+1 = 7.    (In this case, we 
need only store as high as 5 which represents "F".)    The resulting data structure appears 
something like that shown in the table at the end of this article. 

If you have 100 students, you can save yourself 300 bytes of space just in this instance.    
Over four quarters this becomes 1.2 Kbytes.    In terms of pure numbers, you have cut your 
storage needs by sixty percent.    It can clearly be seen that this represents a significant 
savings on a large scale project. 

Encoding and decoding for storage takes a little skill, and I will leave the details to you.    In 
pseudocode, however, storage would probably look something like this: 

          EncodingRoutine 
              Test 1:    word = word + x_Grade;    
              Test 2:    word = word + (x_Grade              shift_left 3);    
              Test 3:    word = word + (x_Grade              shift_left 6);    
              Test 4:    word = word + (x_Grade              shift_left 9);    
              Test 5:    word = word + (x_Grade              shift_left 12);    

          Main Module 
          For FirstStudent to LastStudent 
                    ReadInTestScoreOne    (score two, three, four, or five) and 
                              CallEncodingRoutine 

where word represents the word storage value for the particular student, and x_Grade 
represents that student's grade on that particular test. 

If you are astute, you may be saying, "There's an extra bit at the end that isn't being used."   
Well, if you want to, you can continue on from that point -- bit 15 -- to start storing Test 1 for 
the next student.    Every three words you would have gained space for one extra test grade. 
This accounts for an entire additional student every 15 words -- a gain of 6.6 percent. Since 
storing this way would be even more complex, you may consider that the benefits would not
outweigh the headaches to gain six more bytes. 

Now, let us try another example.    Let us say that you are designing a quiz of eight true/false
questions.    If you use a standard boolean variable or some other byte-sized representation 
to hold the answer for each question, it can cost lots of space (8 bytes per test).    Here is a 
way to condense it.    Use a single byte to hold all of the answers. Each bit in the byte will 
represent the boolean answer for one of the questions (bit 0 = question 1, bit 1 = question 
2, and so on).    You have now reduced required storage space by 87.5 percent.    In the case 
of 100 students' tests, you can save 700 bytes.    Again, over four quarters you have saved 
2.8 Kbytes of storage space both on disk and in RAM while the program is running. 

As in the previous example, encoding and decoding is similar. You would probably want to 
create two numerical constants to represent the options:    TRUE = 1; FALSE = 0.    Then, in 
pseudocode, your storage routine would look something like: 

          Question 1:    byte = byte + answer; 



          Question 2:    byte = byte + (answer shift_left 1); 
          Question 3:    byte = byte + (answer shift_left 2); 
          and so on... 

where byte represents the byte storage value for your quiz answers, and answer represents 
the individual TRUE or FALSE value for that question.    You can probably already see other 
ways to code the above.    Again, I will leave the details to you. 

Of course, the main thing to keep in mind is that these two examples represent "ideas" on 
how data can be compacted.    You can experiment and come up with your own specific 
methods if you have not already. 

I wish you good luck, and have fun... 

Table 

Student: |<                        Student 1                          >|      |<            Student 2... 
Word:        |<                            Word 1                            >|      |<                Word 2... 
Bit:    0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15        16 17 18 19 20 21 22 23 24... 
Constant:    3          2          1            2                1                        2                3 
Grade:          C          B          A            B                A                        B                C 
Test:      |<1>| |<2>| |<3>| |< 4 >| |<    5 >|                |<    1 >| |<    2 >| |<    3 >| 

Vol 1, No 5, December 1992        
      Main Menu 



ADDING    MOUSE    SUPPORT    TO    YOUR    PROGRAM 
Gary Alston 

 I've seen problems with various mouse drivers.    In general, to avoid most problems I tend 
to stick to working with only a small number of the mouse interrupts.    As a general rule, you
should verify that a mouse exists before attempting to use it.    The following code allows you
to verify that a mouse exists and provides other routines to allow you to implement mouse 
support. This code was written for PowerBASIC but can be easily converted to your 
language. 

' assume global integer variable called mouse% 
' that is used to indicate presence. 

' use as:    mouse% = MouseInstalled 

' also assume global integer variables MX% and 
' MY% to record the last known mouse position. 

function MouseInstalled 
          MouseInstalled = 0              ' Assume no mouse 
          reg 1, &h0000 
          call interrupt &h33            ' try to initialize 
          if reg(1) < 0 then MouseInstalled = 1 
end function 

sub ShowMouse 
          shared mouse% 
        if(mouse%) then 
                    reg 1, &h0001        ' turn on the cursor 
                    call interrupt &h33 
          end if 
end sub 

sub HideMouse 
          shared mouse% 
        if(mouse%) then 
                    reg 1, &h0002        ' turn off the cursor 
                    call interrupt &h33 
          end if 
end sub 

function MouseClicked 
          reg 1, &h0003 
          call interrupt &h33 
          if reg(2) and &h0001 then          
                    ' this is left button, the others follow 
                    ' the button ID of 1-4-2 from left to 
                    ' right. 
                    MouseClicked = 1 
          else 
                    MouseClicked = 0 
          end if 
end function 

sub MousePosition 
          shared MX%,MY% 
          reg 1, &h0003 
          call interrupt &h33 
          MX% = (reg(4) / 8) + 1        ' this adjusts the 
                    'location for text mode 



          MY% = (reg(3) / 8) + 1 
end sub 

sub MouseWait 
          while(MouseClicked)              ' loop while the 
                    ' user's finger is still on the button. 
          wend                                              
end sub 

Here's how I usually implement the calls: 
' 
' 
local h% 

if(not keypress) then 
          if(MouseClicked) then 
                    MousePosition 
                    h% = HitTest(feed coordinates here:_                            xlow, xhi, ylow, yhi) 
                    if(h%) then...      ' process 
                              HideMouse 
                              ' do whatever! 
                              ShowMouse 
                    end if 
                    ' next hit test goes here 
          end if ' MouseClicked 
end if ' keypress 
Function HitTest(xl, xh, yl, yh) 
          HitTest = 0 
          if(MX% >= xl and MX% < xh and_ MY% >= yl and MY% < yh) then_ HitTest = 1 
End Function 

Vol 1, No 6, January 1993        
      Processing Interrupts 

      Main Menu 



SIMPLE    USAGE    OF    EXTENDED    MEMORY 
Garrett Krueger 

 Recently I wrote an article on increasing the efficiency of DOS memory usage by employing 
bit-wise data compression at the time of storage.    Now I would like to mention another 
effective way to use DOS's minimal 640K allotment -- don't use it!!! 

"Ha, ha!" you laugh.    "I have to use DOS memory!" 

Well, okay, you can use some of it.    The alternative I am getting at is to use Microsoft's 
eXtended Memory Manager.    If you are programming software for 32 bit machines, this 
option opens up huge new memory frontiers for you -- 4 gigabytes.    (Of course, now you 
become more limited by your pocket book than by the operating system.)    Even 16-bit 
machines still give you 16 megabytes to work with. 

By now, I am sure this is nothing new to you.    The eXtended Memory System has been 
around for several years.    Still, however, its full potential is not being used.    One could 
store entire, large databases in extended memory to eliminate slow disk access. Temporary 
swap files can be stored there.    If your program is large, you could run the entire program in
extended memory using a DOS window as small as 32K or 64K.    Dozens of graphic bitmaps 
for educational games/screens can be stored there.    The list could go on.... 

Enough talk!    Let us get down to the meat of the article -- some program code.    The 
following program is one I wrote to simply and briefly explore the extended memory system 
on your computer.    It was written to compile under Borland's Turbo Assembler (TASM), and I 
know for certain that it works with versions 1.0 and 2.5. 

I believe the general code should work with Microsoft's assembler (MASM), however, the 
code headers (.MODEL, .STACK, .DATA, .CODE) may need to be revised.    If you have MASM, 
you will probably know what to do. 

I have tried to follow a logical progression in program design: check for extended memory 
and size available, allocate a portion for use with our program, store something in it, retrieve
what was stored, and finally de-allocate the portion we own. 

;----------------------------------------------------------------------------- 
;    The following program compiles with TASM v1.0 and v2.5. 
;    Program:    TESTXMS.ASM 
;    Copyright (C) 1992 CleoSci All Rights Reserved 
; 
                .MODEL      compact 
                .STACK      200h 
                .DATA 
errmsg1    db              'No XMS installed$' 
errmsg2    db              'Not enough XMS$' 
errmsg3    db              'Allocate Failure$' 
errmsg4    db              'Free XMS Failure$' 
errmsg5    db              'Error copying block$' 
msg1          db              'Copying data to XMS...    $' 
msg2          db              'Done!$' 
msg3          db              'Copying data from XMS...$' 
msg4          db              'Data in XMS was        : $' 
OStr1        db              'This program checks for, allocates, and then de-allocates',0Dh,0Ah,'$' 
OStr2        db              'XMS memory on your system.    If it is present, it allocates a',0Dh,0Ah,'$' 
OStr3        db              '64K block.    If it is not available, the program terminates.',0Dh,0Ah,'$' 
OStr4        db              'Error messages are displayed if appropriate.',0Dh,0Ah,0Dh,0Ah,0Dh,0Ah,'$' 



BlkRequested    equ            64                                                ;size of XMM request block 
XmmPtr                dd              0                                                  ;pointer to XMM entry point 
TotalFree          dw              0                                                  ;total amount of free XMM 
LargestBlk        dw              0                                                  ;largest single free block 
XMShandle          dw              0                                                  ;allocation handle 
alloc                  dw              0                                                  ;block allocation flag 
errval                db              0                                                  ;holds errors returned 

TotStr            db              'Total XMS Available','$' 
LgStr              db              'Largest Free Block ','$' 
InProc1          db              'Allocating                  $' 
InProc2          db              'Freeing                        $' 
AllocStr        db              'Allocated (shows 1)','$' 
ErrStr            db              'Error code:                ','$' 
CFLF                db              0Dh,0Ah,'$' 
Result            db              ': ',4 DUP (?) 
CountInsertEnd      LABEL BYTE 
                db              ' KBytes',0Dh,0Ah,'$' 

ParamBlk        equ            $                                                      ;XMM parameter block header 
BlkLength      dd              0                                                      ;block size to move (bytes) 
SrcHandle      dw              0                                                      ;handle for source block 
SrcOffset      dd              0                                                      ;pointer to source block 
DestHandle    dw              0                                                      ;handle for destination block 
DestOffset    dd              0                                                      ;pointer to destination block 
DataBuffer    db              'Hello, my name is Garrett$' 
BufferSize    equ            $-DataBuffer 
NewPhrase      db              256 dup (?) 

                .CODE 
ProgramStart: 

                mov            ax,@data 
                mov            ds,ax                                ;sets ds to point to data segment 
                                                                            ; 
                                                                            ; begin XMM system calling 
                call          Opener 
; 
                call          SeekXMM 
                call          GetXMMEntry 
                call          GetXMMSize 
; 
                call          AllocBlock 
; 
                mov            bx,OFFSET TotStr 
                mov            ax,TotalFree                  ;Num to convert 
                call          OutputValue                    ;Total XMS 
; 
                mov            bx,OFFSET LgStr 
                mov            ax,LargestBlk                ;Num to convert 
                call          OutputValue                    ;Largest XMS block 
; 
                mov            bx,OFFSET InProc1 
                mov            ax,BlkRequested            ;Num to convert 
                call          OutputValue                    ;Allocate pass/fail 
; 
                mov            bx,OFFSET AllocStr 
                mov            ax,alloc                          ;Num to convert 
                call          OutputValue                    ;Allocate pass/fail 
; 
                mov            bx,OFFSET ErrStr 
                mov            ax,0 
                call          OutputValue                    ;Error number (if any) 
; 
; 
                ; Now recheck mem avail after allocation 
                mov            bx,OFFSET CFLF 
                call          PrintStr 



                mov            ah,8 
                call          XmmPtr 
                mov            TotalFree,dx 
                mov            LargestBlk,ax 
                mov            bx,OFFSET TotStr 
                mov            ax,TotalFree                  ;Num to convert 
                call          OutputValue                    ;Total XMS 
; 
                mov            bx,OFFSET LgStr 
                mov            ax,LargestBlk                ;Num to convert 
                call          OutputValue                    ;Largest XMS block 
; 
; 
                ;Copy data to XMS and try to read it back again 
                ;into a different buffer.    Print the new phrase. 
                call          CopyBlockToXMS 
                call          CopyBlockFromXMS 
                mov            bx,OFFSET msg4 
                call          PrintStr 
                mov            bx,OFFSET NewPhrase 
                call          PrintStr 
                mov            bx,OFFSET CFLF 
                call          PrintStr 
                mov      bx,OFFSET CFLF 
                call    PrintStr 
; 
                ; Now free block and recheck mem after freeing. 
                mov            bx,OFFSET InProc2 
                mov            ax,BlkRequested            ;Num to convert 
                call          OutputValue                    ;Allocate pass/fail 
                call          FreeBlock 
; 
                mov            bx,OFFSET CFLF 
                call          PrintStr 
                mov            ah,8 
                call          XmmPtr 
                mov            TotalFree,dx 
                mov            LargestBlk,ax 
                mov            bx,OFFSET TotStr 
                mov            ax,TotalFree                  ;Num to convert 
                call          OutputValue                    ;Total XMS 
; 
                mov            bx,OFFSET LgStr 
                mov            ax,LargestBlk                ;Num to convert 
                call          OutputValue                    ;Largest XMS block 
; 
; 
; 
                mov            ah,4Ch 
                int            21h 
; 
; 
AllocBlock PROC    NEAR 
                mov            ah,9 
                mov            dx,BlkRequested 
                call          XmmPtr 
                or              ax,ax 
                jz              error3 
                mov            XMShandle,dx 
                mov            alloc,ax 
                mov            errval,bl 
                ret 
AllocBlock ENDP 
; 
Error3    PROC          NEAR 
                push          ax 
                push          dx 
                mov            dx,OFFSET errmsg3 
                mov            ah,9 



                int            21h 
                pop            dx 
                pop            ax 
                mov            ah,4Ch 
                int            21h 
Error3    ENDP 
; 
Error1    PROC          NEAR 
                push          ax 
                push          dx 
                mov            dx,OFFSET errmsg1 
                mov            ah,9 
                int            21h 
                pop            dx 
                pop            ax 
                mov            ah,4Ch 
                int            21h 
Error1    ENDP 
; 
FreeBlock PROC      NEAR 
                mov            ah,0Ah 
                mov            dx,XMShandle 
                call          XmmPtr 
                or              ax,ax 
                jz              error4 
                ret 
FreeBlock ENDP 
; 
Error4        PROC      NEAR 
                push          ax 
                push          dx 
                mov            dx,OFFSET errmsg4 
                mov            ah,9 
                int            21h 
                pop            dx 
                pop            ax 
                mov            ah,4Ch 
                int            21h 
Error4        ENDP 
; 
SeekXMM      PROC      NEAR 
                mov            ax,4300h 
                int            2Fh 
                cmp            al,80h 
                jne            Error1 
                ret 
SeekXMM      ENDP 
; 
GetXMMEntry PROC NEAR 
                mov            ax,4310h 
                int            2Fh 
                mov            word ptr XmmPtr,bx 
                mov            word ptr XmmPtr+2,es 
                ret 
GetXMMEntry ENDP 
; 
GetXMMSize PROC    NEAR 
                mov            ah,8 
                call          XmmPtr 
                mov            TotalFree,dx 
                mov            LargestBlk,ax 
                cmp            dx,BlkRequested 
                jb              error2 
                ret 
GetXMMSize ENDP 
; 
Error2          PROC    NEAR 
                push          ax 
                push          dx 



                mov            dx,OFFSET errmsg2 
                mov            ah,9 
                int            21h 
                pop            dx 
                pop            ax 
                mov            ah,4Ch 
                int            21h 
Error2          ENDP 
; 
Opener          PROC    NEAR 
                      mov      bx,OFFSET OStr1 
                      call    PrintStr 
                      mov      bx,OFFSET OStr2 
                      call    PrintStr 
                      mov      bx,OFFSET OStr3 
                      call    PrintStr 
                      mov      bx,OFFSET OStr4 
                      call    PrintStr 
                      ret 
Opener          ENDP 
; 
CopyBlockToXMS    PROC    NEAR 
                                mov      SrcHandle,0 
                                mov      word ptr SrcOffset,offset DataBuffer 
                                mov      word ptr SrcOffset+2,seg DataBuffer 
                                mov      ax,XMShandle 
                                mov      DestHandle,ax 
                                mov      word ptr DestOffset,0 
                                mov      word ptr DestOffset+2,0 
                                mov      word ptr BlkLength,BufferSize; 
                                mov      word ptr BlkLength+2,0 
; 
                                mov      bx,OFFSET CFLF 
                                call    PrintStr 
                                mov      bx,OFFSET msg1 
                                call    PrintStr 
; 
                                mov      ah,0Bh 
                                mov      si,offset ParamBlk 
                                call    XmmPtr 
                                or        ax,ax 
                                jz        error5 
; 
                                mov      bx,OFFSET msg2 
                                call    PrintStr 
                                mov      bx,OFFSET CFLF 
                                call    PrintStr 
                                ret 
CopyBlockToXMS    ENDP 
; 
Error5          PROC    NEAR 
                push          ax 
                push          dx 
                mov            dx,OFFSET errmsg5 
                mov            ah,9 
                int            21h 
                call          FreeBlock 
                pop            dx 
                pop            ax 
                mov            ah,4Ch 
                int            21h 
Error5          ENDP 
; 
CopyBlockFromXMS PROC    NEAR 
                                  mov      DestHandle,0 
                                  mov      word ptr DestOffset,offset NewPhrase 
                                  mov      word ptr DestOffset+2,seg NewPhrase 
                                  mov      ax,XMShandle 
                                  mov      SrcHandle,ax 



                                  mov      word ptr SrcOffset,0 
                                  mov      word ptr SrcOffset+2,0 
                                  mov      word ptr BlkLength,BufferSize; 
                                  mov      word ptr BlkLength+2,0 
; 
                                  mov      bx,OFFSET msg3 
                                  call    PrintStr 
; 
                                  mov      ah,0Bh 
                                  mov      si,offset ParamBlk 
                                  call    XmmPtr 
                                  or        ax,ax 
                                  jz        error5 
; 
                                  mov      bx,OFFSET msg2 
                                  call    PrintStr 
                                  mov      bx,OFFSET CFLF 
                                  call    PrintStr 
                                  ret 
CopyBlockFromXMS ENDP 
; 
;----------------------------------------------------------------------------- 
; Subroutine to convert a binary number to a text string. 
; 
; Call with:    AX        = Number to Convert 
;                          DS:BX = pointer to end of string to store text in 
;                          CX        = Number of digits to convert 
; 
; Returns    :    Nothing 
; Registers destroyed : AX, BX, CX, DX, SI 
; 
ConvNumToStr    PROC NEAR 
                push    ax                                                ;preserve all registers 
                push    bx 
                push    cx 
                push    dx 
                push    si 

      ConvertLoop: 
                mov      si,10                                                ;used to divide by 10 ConvertLoop 
                sub      dx,dx                                                ;convert AX to doubleword in DX:AX 
                div      si                                                      ;divide number by 10.    Remainder 
                                                                                      ;is in DX--this is a 1 digit 
                                                                                      ;decimal number.    Num/10 is in AX. 
                add      dl,'0'                                              ;Convert remainder to a text char. 
                mov      [bx],dl                                            ;put this digit in the string. 
                dec      bx                                                      ;point to location for the next 
                                                                                      ;most significant digit. 
                loop    ConvertLoop                                    ;do next digit, if any. 

                pop      si                                                      ;return all registers 
                pop      dx 
                pop      cx 
                pop      bx 
                pop      ax 
                ret 
ConvNumToStr    ENDP 
;----------------------------------------------------------------------------- 
; 
;----------------------------------------------------------------------------- 
; Subroutine to print a text string. 
; 
; Call with:    BX = string to print (i.e. mov    bx,OFFSET StrToPrnt) 
; 
; Returns    :    Nothing 
; Registers Destroyed : AX, DX 
; 
PrintStr            PROC      NEAR 
                push    ax                                ;save registers 



                push    dx 
; 
                mov      ah,9                            ;dos printstring function 
                mov      dx,bx                          ;string to print (in bx) 
                int      21h                              ;go ahead, print it 
; 
                pop      dx                                ;restore registers 
                pop      ax 
                ret 
PrintStr            ENDP 
;----------------------------------------------------------------------------- 
; 
;----------------------------------------------------------------------------- 
; Subroutine to output a numerical value as a text string. 
; 
; Call with:    AX        = Number to Convert 
; 
; Returns    :    Nothing 
; Registers destroyed : AX, BX, CX 
; 
OutputValue      PROC      NEAR 
                call          PrintStr 
                mov            bx,OFFSET CountInsertEnd-1      ;locate end of storage area 
                mov            cx,4                                                  ;number of digits to convert 
                call          ConvNumToStr 
                mov            bx,OFFSET Result 
                call          PrintStr 
                ret 
OutputValue      ENDP 
;----------------------------------------------------------------------------- 
; 
; 
                END            ProgramStart 

If you have extended memory available on your system and the program was copied, 
assembled, and linked correctly, your screen should show you something like this: 

------------------------------------------------------------ 
This program checks for, allocates, and then de-allocates 
XMS memory on your system.  If it is present, it allocates a 
64K block.  If it is not available, the program terminates. 
Error messages are displayed if appropriate. 

Total XMS Available: 3008 KBytes 
Largest Free Block : 3008 KBytes 
Allocating         : 0064 KBytes 
Allocated (shows 1): 0001 KBytes 
Error code:        : 0000 KBytes 
Total XMS Available: 2944 KBytes 
Largest Free Block : 2944 KBytes 

Copying data to XMS...  Done! 
Copying data from XMS...Done! 
Data in XMS was    : Hello, my name is Garrett 

Freeing            : 0064 KBytes 

Total XMS Available: 3008 KBytes 
Largest Free Block : 3008 KBytes 
------------------------------------------------------------ 



I would like to close by offering sources for more information. Chapter 3 (Ray Duncan) of the 
book Extending DOS details your alternatives when using the extended memory manager.    
You may also write Microsoft at:    Microsoft Corporation, Box 97017, Redmond, WA 98073.    
Ask for the free publication Extended Memory Specification Version 2.0. 

Vol 1, No 7, Feburary 1993        
      Bit-Wise Data Compression 

      Main Menu 



PROCESSING    INTERRUPTS    IN    C 
Gary Alston 

 In the last ESC newsletter (Vol 1, No. 4), John Gallant had some good video animation tips, 
but said he'd leave the subject of interrupts to others. Interrupts can certainly be 
manipulated in C, and the following code will show you how it's done. The good news is that 
it does NOT require an assembler. The bad news is that you still have to know what you are 
doing.... 

We have been using this basic framework for writing TSR code for years now, and it works 
fast enough that we'll present it to you. Hopefully, some of you may be able to combine the 
techniques shown here with Mr. Gallant's general dissertation. 

The function of type INTERRUPT is a special case with the Borland compilers, and I recall that
MSC also supports them, albeit using a slightly different call. Essentially, type INTERRUPT is 
called whenever an interrupt is invoked. The first step, in function main(), is to use 
getvect() and setvect() calls. These are little more than a more convenient way to call 
the exact same function using DOS. Getvect(), when called, will point to the interrupt 
vector (i.e. physical location pointer). In this example, we're going to replace the 18.2 / sec 
timer tick interrupt at hex 1C. We will replace it with another INTERRUPT function that we'll 
call OurInt. 

This is all really very simple: All we need to do is to use getvect() to read the current 
interrupt vector, and use setvect() to point to our OurInt function which will replace it. 
Note that setvect() will essentially replace the old interrupt vector with the (dynamic) 
physical address of the OurInt function. 

The functioning of OurInt is also pretty straightforward: sflag is used to tell us if we are 
already in process in case we get interrupted in our own process. OurInt also uses 
pseudovariables to record the register contents and set up a stack. The size of this stack is 
going to depend on what you are doing. Note that you'll generally want to keep everything 
the interrupt takes care of pretty small to start with. 

The code that you write inside the OurInt function depends on what you want it to do. What 
you CANNOT EVER do is use any function that uses a DOS call. Writes to ports, using BIOS, 
direct memory manipulation and so on are fair game. Sometimes you may want to use a C 
library function. If you are unsure if it calls DOS, simply compile the program in command 
line mode to have it output the assembler code. In Borland implementations, it looks like: 

BCC [options] -S (asm listing) [filename] 

This general purpose routine is very handy. We have used it as the shell for putting clocks 
on-screen, reading touch pads and fooling a program so it thinks it's seeing keyboard 
keystrokes (by inserting key and scan codes into the keyboard buffer) and so on. There's no 
reason why you can't use this to do memory moves. 

Restoring this when you are done is simple, too: just reverse the calls. 

In summary, I hope that if you were unsure of how to access and revector system interrupts 
that this will help. I can also recommend the book The Art of C -- Elegant Programming 
Solutions by Herb Schildt, published by Osborne / McGraw-Hill (ISBN 0-07-881691-2). It has a



very good section on this subject and contains working sample code on disk. 

See following source code examples. 

#include <dos.h> 
#include <stdlib.h> 
#include <process.h> 

void interrupt (*oldclock)(void); 

// GLOBAL VARIABLES 
int savess, savesp, sflag; 
char stack [0x1000]; 

void IntSetup(void) 
{ 
      oldclock = getvect(0x1c); // clock timer 
      setvect (0x1c,OurInt);        // re-vector 
      keep (0, 2000);                      // set aside 32k and KEEP dos from reallocating 
} 

void interrupt OurInt (void) 
{ 
          if(!sflag){ 
          savesp = _SP; // save the current stack pointer 
          savess = _SS; // and stack segment 
          _CX = (int)&stack[sizeof(stack)]; 
          _SS = _DS; 
          _SP = _CX; 
          } 
          sflag++; 

          // YOUR CODE GOES HERE 

if (!--sflag) { 
          _SS = savess; // restore the stack pointer 
          _SP = savesp; // and the stack segment 
        } 
} 

Vol 1, No 5, December 1992        
      Animation Notes 

      Main Menu 



IS    SHAREWARE    DEAD? 
Randy MacLean 

 For over twelve years, I've participated in the vibrant and radical world of the shareware 
community.    During that time, I've seen fortunes made and lost, conventions turned upside 
down, and the coming (and sometimes, sadly, the passing) of the greats of our business. 

Recent trends have made me wonder if the shareware phenomenon has passed its peak.    
Although the evidence is more anecdotal than scientific, it's still cause for pause. 

Item: The once-burgeoning ranks of disk vendors have experienced a precipitous drop.    
Many of the key vendors of yesteryear have disappeared, and overall the number of active 
vendors is down (by some reports) to less than half of their peak levels. 

Item: The number of new authors entering the business is below what we experienced only a
year or two ago.    Meanwhile, many of the best known shareware operations are deriving a 
growing proportion of their business from more traditional activities -- contract consulting 
and retail publishing. 

Item: Many authors are reporting lower registration earnings.    Although there are those with
focused marketing efforts who are expanding their activities (and their income), many of the
more casual operations are experiencing a general decline in revenue.    A lot of authors are 
finding it increasingly difficult to maintain peak sales levels. 

All this is in sharp contrast to the two bright spots in the industry: The explosion of BBS's and
the new-found celebrity of the Internet are bringing new users to the online community in 
droves.    Modem sales are way up, and there are more users of online services than ever 
before. 

Traditional software publishers are embracing shareware distribution as never before.    
Players like Interplay and Lucas Arts have discovered the power of shareware distribution, 
(advertising that pays, not costs). After some reflection, I've come to the conclusion that 
these changes are a natural consequence of changes in our users' environment. 

All of us can remember back to when computer software outlets were rare indeed.    In those 
days, the shareware marketing system (and mail-order vendors) gave users a broader 
selection of software in a relatively convenient home delivery system. 

Today, software superstores are within driving distance of 80% of the population, delivering 
an incredible range of choice at competitive prices. The gaps are largely filled by a myriad of
retailers, from video stores to the local Radio Shack.    A user can drop into a nearby store 
and immediately pick up the perfect program for his needs.    For the user, there's no need to
wait for mail delivery of a great shareware offering. 

The downward pressure on software prices has also eroded the price advantage shareware 
products used to enjoy.    These days, almost any kind of package can be had for under fifty 
or sixty dollars. 

So, where does this leave us? As usual, with a lot of opportunity! First, shareware retains its 
original advantage - users can evaluate our software before purchasing it.    The trick is to 
make sure that they actually try it out before they head down to the store. Bundling with 
other programs, software collection CD's, and online access are more important than ever -- 



you've got to get your software into the hands of as many users as possible.    Make sure the 
delivery is coherent -- the user has to be able to find your programs. There's no benefit if 
you're buried on a CD with a million ZIP files. 

Second, we should still enjoy a price advantage.    We're not saddled with skyrocketing 
marketing costs the retail guys face.    Of course, this means we'll have to sell more copies to
keep our revenue up, but we're in the software business and everyone in our business has to
deal with that.    In the meantime, users have a right to expect to pay less for a shareware 
program (with no fancy manual, packaging, etc). 

Third, we've got excellent access to the retail marketplace.    Retail publishing deals can be 
had by many authors, and nearly everyone can get onto a retail CD.    Bundling deals are 
more popular than ever, with software and hardware vendors always looking for ways to add
value and differentiate their offerings.    This gives you the chance to be in the user's hands 
before he heads down to the store to purchase your commercial competition's offering. 

Fourth, we can beat the retailers at the "instant gratification" game. Through the use of 
online registration services, ZIP unlocking and other systems, we can make obtaining our 
programs faster and more convenient than our retail competitors ever can.    Any method 
that'll deliver the registered version easily and immediately will knock the retail publishers 
out of the running. 

I expect that there'll continue to be casualties in the shareware community.    Like the mail-
order vendors who failed to make the transition to retail, those who continue to do business 
the old way -- the way that used to work -- will have an increasingly difficult time making 
shareware pay. 

However, the brightest and most nimble -- those who understand and take advantage of the 
evolution of the market -- will continue to prosper, as they always have. 

So is shareware dead?    Not for those who can understand and adapt to the evolving 
environment.    The future will be interesting to watch. 

Vol 4, No 5, November 1995        
      Main Menu 



SHAREWARE    MARKETING    STRATEGY 
Tim Sweeney 

 Shareware is a unique way of marketing software, and it needs to be approached with a 
good strategy to be profitable.    The Epic MegaGames philosophy is clear, simple, and it 
works extremely well. 

We make shareware successful by giving our customers an excellent, complete, and top-
quality product for free -- then we sell them more of what they want:    Even more excellent, 
complete, and top-quality products. 

It is this simple strategy that is responsible for Epic's success -- this is why a good Epic game
can bring in 20 orders per day, while most other shareware typically gets two orders per 
week. Most shareware fails to sell because most shareware authors don't know how to use 
positive marketing -- but we do, and therefore we are successful. 

Here is how most authors fail:    They do not make their potential customers happy.    When a 
customer is happy, he will be in a good mood to order.    An unhappy customer will not order. 
To make our potential customers happy, we give them great shareware games -- fully 
working, top-quality products that they can play and enjoy for free.    This makes our 
customers happy. 

Once a customer is happy, he is ready to buy.    Our next step is to sell him something.    We 
do this by offering more games, and extra bonuses:    hint sheets, cheat codes, bonus game 
disks, and more.    These extras are incentives for our customers to order. 

Here is why other shareware authors fail: 

1.      They cripple their products -- for example, a game without a "save" feature -- you 
have to register if you want to save your game.    This fails because customers end up 
being mad at the author;    unhappy customers won't order. 

2.      They don't offer any incentives to customers.    Amazingly, many shareware authors 
basically say this: 

            "If you like this program, please register by sending 
            $30.    You will receive the latest version of the 
            program and the author's gratitude." 

But what are they selling?    For $30, the customer will receive something he already has!    
That is not an incentive for ordering -- you need to sell them something they do not have, 
and would like to have. 

Here is why Epic's games sell so well in shareware: 

1.      We give customers great, fully-working software free for them to enjoy, which puts 
them in a good mood -- they like us and they trust us, so they are glad to do business 
with us. 

2.      We sell them something they want to buy:    More games, hint sheets, cheat codes, 
bonus games, and more.    Customers love this stuff! 



Trilogies! 

Epic's secret to success:    All of our games are trilogies -- a three-volume series of games.    
We give away part 1 as shareware, and we sell parts 2 and 3 to customers.    Yes, we have to 
work harder to create three episodes of a game, but it pays off. Customers love the first 
episode of our games, and are happy to get the other episodes from us.    It's a great deal! 

Game Requirements 

The best-selling games in shareware are all trilogies.    That's why it is so important to design
a game with a 3-part series in mind.    Several kinds of games are very easy to adapt to 
become a multi-part series: 

1.      Arcade-adventure games like Jill of the Jungle:    Many different levels and worlds. 
2.      Pure arcade games like Kiloblaster:    Many different levels. 
3.      Role-playing:    New scenarios, creatures, and objects can be added. 
4.      Strategy games:    New scenarios and, creatures, and objects can be added. 

Quality, Technology, and Gameplay 

These three factors are the absolute most important pieces of a successful shareware game. 
Fortunes are made or lost based on quality, gameplay, and technology.    Thousands of 
shareware games are released every year, but only a select few make it to the top.    These 
are the absolute highest quality, best games, with the most modern technology possible. 

Quality:    Games these days need to be designed to be 100% bug- free, compatible, easy to 
operate, and extremely "clean" in terms of graphics, sound, and gameplay.    When it comes 
time to finish a game for release, our authors are not just coders -- they are Software 
Engineers -- with the responsibility to totally test, debug, test, polish, test, and test their 
product.    Customers expect only the best from the Epic MegaGames team, and we will work
to deliver.    It's not easy, but this is our job. 

Technology:    Dazzling graphics, dazzling music, dazzling sound effects, dazzling techniques. 
These are the common factors linking all shareware success stories.    In terms of graphics, 
customers will come from around the world for smooth, 256-color, animated VGA graphics 
that exploit their CPU's to the limit.    If you've seen a technique used before, it's not good 
enough -- we need to push the PC to the end of its limits, then push it some more.    That is 
how we'll leave the competition behind. 

Gameplay: No matter how much quality and technology a game has, it can only be 
successful if you have a great core game. Customers want fun and innovative action which 
will keep them entertained for many days of play -- with new twists of plot around every 
corner, new scenarios being revealed every step of the way, and vivid variety. 

Summary 

Quality, technology, and gameplay make our games successful -- and guarantee that Epic's 
shareware will spread throughout the world and generate an instant following.    The 
competition is good, but we're better -- and we are working very hard to be the best. 

Once we have a good product, it's our customers who ultimately make shareware profitable. 
By giving the best, top-quality games to them, we have the opportunity to sell them more 
great games and bonuses -- by keeping the customers happy, we'll be successful. 



Our customers win, our authors win.    This is the Epic MegaGames way. 

Vol 1, No 7, February 1993        
      Main Menu 



THE    WORLD    OF    MULTIMEDIA 
Orlando Dare and Clarence S. Wright, Jr. 

 The dank, cold walls of stone in the underground bunker are punctuated only by paintings of
"Der Fuhrer" and massive, steel doors.    A steel door opens with a clang.    The hero bursts 
through the doorway, a German Schmeizer machine-pistol in hand.    Two German Shepherd 
police dogs bark furiously, then attack.    Several quick bursts of fire from the machine-pistol,
and the hounds yelp, then expire.    The hero whirls to his left as he hears something.    An SS
Officer approaches, his footsteps clearly audible.    He begins firing his Luger.    Another quick 
burst from the hero's machine-pistol, and the SS officer dies, his final breath crying out "Ach,
mein Lieben!" 

This isn't the scenario of a movie or even of a kid's arcade game.    This is a scene from 
Wolfenstein (tm), a multimedia game program that thousands of PC buffs are enjoying on 
their home (or office) PCs. 

Just what is multimedia? It may be defined as the simultaneous presentation of a series of 
effects in more than one media or format.    That may include audio (sound), high resolution 
graphics (video), animation or a combination of all three. 

I'm certain that all of us can recall our high school days when the teacher would drag in a 
fairly massive roll-away with a 16mm sound projector.    Someone would have to set up the 
screen. Then we would watch a movie presentation by the National Farm Bureau called 
"Soybeans Are Our Friends" or some such similar title.    Then, if the teacher wanted to 
present an accompanying slide show, in came another roll-away with an overhead projector 
or perhaps a film-strip projector hooked to a record player. That was eventually replaced by 
a TV set hooked to a VCR -- a slight improvement.    A/V or Audio-Visual systems were, for the
most part, bulky because it took several different kinds of equipment to achieve the effects 
we wanted. 

That's ancient history these days.    The desktop computer with a few peripherals can do it all
--    and much better, at that.    A desktop computer can be equipped with a sound card, high 
resolution graphics card, external speaker hook-ups and either a CD-ROM drive or a hard-
drive (or both) and you're ready to rock 'n' roll.    Instead of a computer monitor, we can use 
full color liquid crystal projection plates that fit on an overhead projector for wall-sized 
presentations. 

Multimedia represents a breakthrough in computer aided audio-visual technology.    Imagine 
turning dull business meetings and boring school classes into show-stopping, eye-popping 
presentations, complete with CD-quality speech, music, special effects and high quality 
graphic images.      We're not talking about something in the distant future.    We're talking 
about today -- right now ! 

Unless you've been on some remote island in the Pacific, you've probably heard the term 
"multimedia" repeated as if it were some high-tech mantra.    Perhaps, not knowing exactly 
what multimedia really is or how easily the average PC can be upgraded to make use of 
multimedia, you probably tuned it out. However, multimedia is an ever-growing force, 
making its foothold in businesses, schools, corporations and in the home, and is now edging 
its way into networked applications. 

Multimedia has become an industry catch-word for specially equipped PCs capable of 



delivering full motion video, stereo sound and near-photo quality still pictures.    The 
technology isn't all that revolutionary, really.    Just take any PC with plenty of speed and data
storage space, add a sound board and stereo speakers and a special compact disk player 
capable of storing today's complex multimedia software programs and you've got multi-
media.    Some programs use laser-disk players that have been on the market for over a 
decade. 

"Why," you ask, "should we bother with multimedia?" One reason is to get and hold the 
viewer's attention.    Multimedia grabs and holds your attention.    According to studies, 
audiences retain twenty percent of the information they hear, forty percent of what they see
and sixty to seventy percent of the information learned through interaction.    Multimedia, by 
appealing to more than a single sense, gets the viewers more interested and allows them to 
retain a larger percentage of a particular message. 

Schools compete for the attention of kids raised on electronic TV games and rock video.    
The same kids are, for the moment, the most avid users of multimedia programs.    On the 
adult level, multimedia presentations are a growing force in the marketplace.    It is being 
used in sales presentations, as an information medium in the political arena and as spot 
presentations in stores and shopping malls to attract business. The 1.44 megabyte 
multimedia "demo disk" has become a commonplace means of attracting sales to new forms
of PC programs.    That same 1.44 megabyte disk can be used for a full color, sight-and-
sound multimedia presentation lasting ten minutes or more.    As such, it is being used to tell
people about our national parks, to sell time-share condominiums and as an "electronic 
yellow pages" system to help people plan their vacations in interesting places. 

"So," you ask, "what's all the big fuss over multimedia? It sounds nice, but..." The problem is 
that the average person has several basic misconceptions about the uses of multimedia. 
These misconceptions tend to color the way that they look at anything connected with 
multimedia. 

Error #1: You have to have a "monster machine" PC in order to effectively make use of 
multimedia.    WRONG! Any PC, 80286 or higher, with a good hard drive, can be easily 
upgraded to multimedia.    You will need a good VGA graphics card (preferably with 1MB-
RAM) and VGA monitor.    For memory, it's best if you have one or more megabytes of RAM 
on your motherboard.    Multimedia sound boards sell for about $100.00 and can be hooked 
into existing external sound systems (such as your home stereo.) Complete multimedia 
systems sell for about $800.00 to $6,200.00. If you want to access any of the numerous 
multimedia programs on CD-ROM, the drive units start at about $300.00 and up. 

Error #2: Multimedia is mostly for kid's games and high-tech stuff.    WRONG! There are 
numerous multimedia programs already available covering nearly every facet of the wide 
range of PC programs.    Want an entire encyclopedia on one CD-ROM disk, complete with 
multimedia data about almost anything and everything? How about User-Interactive 
teaching and tutorial programs?    Games (for children and adults)? Spreadsheets? Business 
Presentations? Multimedia covers it all and more.    New multimedia applications are 
appearing daily. 

Error #3: Creating your own multimedia program is far too expensive, takes too much time 
and requires a PhD in Computer Nerdology.    WRONG, AGAIN! The average commercial 
multimedia development program starts at about $400.00.    There are shareware multi-
media development programs for under $100.00. Most programs are user-friendly and 
require a learning level equivalent to writing batch files at the DOS level. 

Multimedia can take on the role of a trainer, teacher, guide, and presenter as used in 
training, education, sales and marketing applications.    Interactive training or educational 



programs allow the user to move at his or her own speed, to review sections of a program 
that are not fully understood, or to look more closely at topics of interest. 

How complex can it be? Well, as an example, if a students are learning about Dr. Martin 
Luther King, Jr., they can supplement what they read by seeing and hearing Dr.    King's "I 
have a Dream" speech in multimedia.    Students can cut and paste the information into a 
multimedia school report on Dr. King, complete with text, narration and actual clips of Dr. 
King at work. 

Multimedia is becoming increasingly more popular because it combines text, graphics, 
video, audio and animation on a PC to provide a powerful communications format.    It has 
already invaded the area of electronic "hypertext" books and tutorials with User-Interactive 
"desktop publishing" books that include graphics, sound effects and CD-quality digitized 
sound.    The technology is even beginning to infiltrate networks.    There are several forces 
behind multi-media's increasing demand and popularity.    Rapid technological advances 
make multimedia more affordable and practical.    Major software developers have arrived at 
a working multimedia standard.    In addition, vendors are creating alliances for multimedia 
software and hardware development. 

Meanwhile, in the software arena, specialized programs, such as games, educational 
reference packages, authoring tools and animation are quickly making inroads into the 
mainstream. Numerous hardware developers are offering new desktop PCs equipped for full 
multimedia use and development for prices ranging from $1,500.00 to $3,500.00.    As a 
result of this, software developers are including multimedia capabilities in otherwise staid, 
business programs.    Even word processing, database and spreadsheet programs are 
sprouting multimedia features.    This development is largely due to such technological 
revolutions as the QuickTime (tm) real-time synchronization of video, animation, graphics 
and sound.    MWindows (tm), a version of Windows (tm) 3.0 with multimedia extensions, is 
also a prime moving force behind this development. 

Recently, however, multimedia has come to mean something entirely different to game 
makers and thus to game players.    The term has somehow evolved to become a synonym 
for compact disk-based entertainment, as if the storage medium, alone, determines the 
genre. 

Actually, the change in emphasis shouldn't come as any great surprise.    CDs hold enormous
amounts of data that can be easily and quickly accessed.    This acts as a magnet to 
developers who have been putting six, eight, ten or more floppy disks in their boxes.    CDs 
must look like the seemingly limitless Steppes of Russia to developers, offering open byte-
space that seems to stretch from horizon to horizon. 

It's nothing new, really.    With the development of Upper-Level Memory and 100+ megabyte 
hard drives proliferating the market, software developers create larger, ever more complex 
programs.    In the "good old days" when 640K-RAM and dual floppy drives represented the 
top of the market, software was small, tightly written and somewhat simplistic.    The idea 
was to get in, do the job and get out.    Not today! DOS, which used to occupy a single disk in
its working format, now takes up half a dozen disks in compressed form.    OS/2? Get serious!
Some programs are normally packaged on CD-ROM disks.    Software developers look at the 
"wide open spaces" on a CD-ROM disk and, like land developers, start looking for ways to fill 
that space with features that will force games to grow up.    You'll get more elaborate sound 
effects, album-like sound tracks, detailed graphics bit mapped or object-oriented 
backgrounds and more talk. Graphics in the 1024 X 768 SVGA mode will become more 
common, but will eventually be replaced by much higher graphic formats. Games publishers 
see multimedia CDs as the next logical step upward from games that originated on floppy 
disks.    In some cases, the CD is simply a substitute delivery system that replaces what 



would have been dozens of high density disks. 

One of the better examples is the CD version of Secret Weapons of the Luftwaffe (tm), a 
World War II flight simulator that pits American planes against the futuristic Nazi jet and 
rocket-propelled aircraft.    The CD not only holds the game, itself, but also contains several 
second-purchase packages which add planes to both sides' inventories.    The only difference
between the CD-ROM version of the program and the floppy-based version is the fact that 
the CD-ROM version contains the extra aviation "inventory" that purchasers of the floppy-
based version will pay extra to get. 

Let's take a brief look at some of the multimedia applications in the past and a peek around 
the corner into the future to see what we can expect. 

Schools: In New York, a public junior high school is using multimedia along with traditional PC
programs as a central part of its technology-based curriculum.    "[Multimedia] lets me 
explore stuff and do what I have to do by myself," says Jacqueline Rivera, an eighth grade 
student at the School of the Future.    Her recent multimedia presentation on Benjamin 
Franklin earned her a B+, she says, with a smile. 

Business: Computerized flight simulators have long been a common training tool at 
American Airlines.    Now, American is using multimedia to let other employees train 
themselves and to allow travel agents to provide customers with up-to-date video tours of 
distant resorts.    Its multimedia program, which shows and tells American's chefs how to 
prepare in-flight meals, won a recent airline industry award for innovation. 

Information: Arlington International Raceway uses an IBM multimedia package to educate 
patrons on the basics of horse racing and wagering.    By touching a screen, visitors can 
retrieve footage of famous race horses, interviews with jockeys or a rundown of track side 
restaurants.    One interesting twist: Hitting the sushi icon gives Japanese race fans flight 
information to Tokyo and directions to a famous sushi restaurant there. 

From the modest beginning of the common PC comes the rich sound and multimedia 
interactivity of today's PC -- one integrated system that can play audio, show animation and 
display high-resolution video graphics.    You can explore CD-ROM based travel brochures or 
mail-order catalogs, complete with the engaging sights and hi-fi sounds and full color 
animation. Create your own artwork and animate it.    Link your multimedia PC to a keyboard 
to record, store and replay MIDI music.    The possibilities are as varied as your own 
imagination. 

The workplace has become a dynamic, multi-sensory environment.    Decisions are made and
actions are taken based upon how clearly a person's meanings, actions and ideas are 
presented and perceived.    Using multimedia, you can enrich your presentations with sound, 
music and high quality images. Interactivity helps you to customize your communication to 
each audience's specific interests. 

Need to train someone? You can both show and test trainees about product demonstrations, 
diagnostics or any other task. You can also use multimedia to control laser disk players, 
digital video boards or virtually any other type of media device.    In standard productivity 
applications such as spreadsheets, databases, word processors or electronic mail (email) 
multimedia annotations help you to quickly convey what text alone cannot.    Remember, a 
picture is said to be worth a thousand words.    How many words is a picture, animated with 
sound, speech and music worth? 

Let me ask you a few questions so we can see some of the ways that YOU can use 
multimedia software and hardware.    For each, we'll pose a little preliminary scenario for 



your consideration. 

You are a grade-school or Sunday-school teacher.    You know that getting the student 
interested in what you have to say is the first, and most important half of the battle.    (The 
second half of the battle is trying to satisfy the demand for knowledge once that interest has
been sparked.) You have a PC with multimedia software and hardware and a VGA graphics 
card and monitor. 

Question: Wouldn't it be easier to write your own "presentation" for your class? (Using a 
simple hand-scanner to scan in images and coloring them using any of a number of easy-to-
use "paint" programs makes it possible for you to review a student workbook with all of your 
students at once.) Question: Using the graphics you have already designed for the classroom
presentation, couldn't it be easier still to create a "review test", putting copies of that test 
into each student's PC? 

You are a salesman working for ABC Widget Corporation. You've just gotten word from a 
friend that one of the Corporate High Muckety-Mucks will be present at tomorrow's sales 
meeting. They are looking for a new Mid-West District Sales Manager.    You have tomorrow's 
presentation all worked up on a flip folder (just like everyone else) with charts and graphs 
and sales projections. 

Question: Wouldn't your sales presentation have a greater impact if you used the charts and 
graphs you have already prepared on your PC as part of a multimedia presentation? 
Question: How soon could you and your family be ready to move to Denver, Colorado as the 
new Vice President of Sales for the Midwest Region? 

You are a local small business owner or manager.    You have been asked to give a seminar to
other SB Owners and Managers on Business Techniques for the 1990s by your local Chamber
of Commerce.    You could give your presentation or seminar using the same tired, old flip-
charts and what-not that have been used for the past fifty years.    The odds are pretty good 
that more than half of your audience will be sleeping peacefully before you get to the third 
chart.    Question: If you create your own multimedia presentation (a) Won't your audience 
get more out of what you say? (b) Won't these other business owners and managers 
remember you and what your company represents when they have need of the products and
services you have to offer? 

Are you beginning to get the drift? 

Now, you have been reading a magazine article.    At best, the printed page is a two-
dimensional media of information presentation.    (My apologies to the editors and publishers
of this magazine, but facts are facts.) There are literally thousands of ways that the 
information in this article could have been presented in multimedia that would have been 
more interesting and much more informative.    Perhaps (or probably) the magazines of the 
future will be presented as Electronic Publishing with full hypertext and multimedia 
capabilities.    We have the ability to do so right this minute.    However, publishers that use 
the traditional paper media will continue to use the paper media only so long as the public 
does not demand (at the cash-register level) that we move into electronic publishing, 
hypertext and multimedia modes. Multimedia and its sister informational presentation mode,
electronic publishing, represent the future of PCs in our society. 

I'm reasonably certain that the owners and users of the horse and carriage thought that the 
horseless carriage was "just a passing fad," but it doesn't work out that way.    Multimedia, 
like the "horseless carriage," is here to stay.    It isn't merely a part of the future.    In the 
information age, it is the future. 



Vol 1, No 8, April 1993        
      Main Menu 



PRODUCT    DIARY 
Richard Goulet 

 As a new author of a shareware product (Mr. Spell) I've just started what I consider one of 
my most important activities, keeping a product diary. Humans have medical records and 
financial records that track two different types of health; both deal with the past.    The 
purpose of a product diary is to track the past, but more important, it serves to help in the 
area of planning future marketing.    If you think of a software product as a living thing, then 
like a doctor you want to know a lot about it to keep it healthy. Since you have a lot more 
control over your own software product than a doctor, the plan should not just be to keep it 
healthy, but also to make it grow and prosper. There are three different types of information I
will be keeping in my product diary: miscellaneous record keeping, financial information and 
distribution tracking. 

Misc. record keeping: 
            publishing date 
            beta testing dates and information 
            all version names and release dates 
            in-house archival storage names for all versions 
            name and date tracking of any contracts 
            any PR (public relations) dates 

Financial (monthly): 
            registrations and upgrades 
            income 
            expenses 
            profit 

Distribution tracking: 
            when and where each version was sent 

The product diary is not meant to go into any kind of detail. Like a photo album, it collects a 
snapshot of the product's life. The record-keeping section is needed because I have a bad 
memory; it's the other two sections that are important to support future marketing. Financial
information is a sign of health: is the product growing or dying?    How long after filling the 
distribution channels does it take to see significant income?    Does the time of year affect 
sales?    How long does it take for a release to get old?    How effective was any PR? 

Distribution tracking is important to help explain financial results and to plan future 
marketing.    Did getting to be on a cover disk make a big difference?    How many sales can 
be tracked to online services, CD-ROMs, the different vendors and to the local area BBS?    Is 
marketing through low cost retail better than shareware? 

The purpose of tracking is both to understand how the shareware distribution channels are 
working for you, and more important, to give you the information you need to try to improve
your marketing.    For example, if you don't get the largest number of registrations from 
California, then this information shows you that you have both a problem and an opportunity.

With tracking you look for trends as well as anything strange.    Can you spot the future from 
small but steady changes in your sales?    Are CD-ROMs replacing vendors or BBSs as your 



best source of sales?    Why does one small vendor produce more sales for you than the 
larger vendors? Did getting a software agent in Australia increase sales? Why do you get 
more sales from Iceland than England? 

Assuming that you have created a product that there is a demand for, and that you have 
included good positive reasons for people to register it, then there is only one step left, 
marketing it.    You can let the shareware channels move your product around for you and 
hope for the best or you can study the distribution channels and actively try to improve your
marketing. Watch your product's flow through the different channels as well as which 
channels produce the highest returns. 

You can improve your marketing by first getting to know the patient and then by coming up 
with ideas of how to treat what ails its health.    The product diary helps you to do this for 
each of your software creations. 

Vol 3, No 5, October 1994        
      Main Menu 



FILE_ID.DIZ 
Bruce Jackson 

 Here are a few of the problems I see when I am trying to post files on my BBS.    The 
different complaints come from several SysOps. So, although I have compiled this listing, not
all of this comes from me. 

1. The programs are not archived.    Please, when submitting, make sure you submit a ZIPped
file (or files if your program's size requires you to break it down into two or more parts).    ZIP
is the extension created when compressing a program with PKZIP, an archiving program by 
PKWare available on most BBSs. If the program is not archived, the sysop must work harder, 
and this also allows the program to be circulated under many names.    PKWare's ZIP is the 
most widely used archive program.    Sysops who are not set up to use ZIP will be set up to 
change from ZIP to the archiver of their choice. 

NOTE:    Many programmers submit files that do not have incrementing version numbers in 
the filename. This can be done if the only BBSs the program is on are the ones it is shipped 
to, but the distribution is cut way back. This is a biggie on the ESC CD-ROM as I have ended 
up killing somewhere between 30%-50% of the programs because naming conventions were
not followed, causing me to put older versions back on line.    In some cases this was not 
discovered until the newer version had been killed.    Please, find the convention that works 
for you and stick with it. I can find the old program, delete it, and then run several batch files
to make the various lists used by my utilities to decide if the upload should be allowed.    
However, I cannot upload XYZ.ZIP to a BBS that has it already, no matter which one is 
newer. A better way would be to release XYZ1.ZIP so when you release an upgrade, 
XYZ2.ZIP can be uploaded without the hassle to any BBS while allowing you better control of
the distribution of your product. 

Many sysops rename programs submitted without version numbers in the file name name, 
or just do not post them.    This limits the effectiveness of your distribution and allows older, 
less feature-filled versions, to stay in the marketplace long after they should have been 
deleted. Either way, placing the version number in the file name just makes good sense. 
Note that in some special instances such as CompuServe and ZiffNet, it is requested you do 
not use version numbers, but these are exceptions. 

2. The programs are hidden in subdirectories on the disk.    Once again, please, make it easy 
for the sysop to get to the file. Place all submissions in the ROOT directory of the floppy. If 
you have multiple products, put each one in a separate ZIP in the root directory. NOTE:    
When processing files, many sysops just "COPY A:\*.ZIP" and if your program does not copy, 
you do not get posted on that BBS. Please, for maximum distribution, keep your distribution 
archives in the root directory of your distribution floppy. 

3. The programs sometimes come in a self extracting EXE file and not in a single ZIP.    The 
self-extracting archive adds to the size of a file and allows another possible location for a 
virus to reside and so is rejected by many BBSs because of this one factor alone. 

4. Submissions do not contain a FILE_ID.DIZ or have one that is "improper".    This file is a 
small text file within the archive that describes the program.    It must be no larger than 45 
characters per line with a 10 line maximum.    It must contain only text and no extended 
ASCII. 



The "improper" FILE_ID.DIZs have contained blank lines and extended ASCII, exceeded 45 
characters per line or 10 lines per file, or were not named FILE_ID.DIZ. 

The file named FILE_ID.DIZ contains a description that, in its simplest form, has a maximum 
of 10 lines with a maximum of 45 characters per line. Here is the format: 

x xx xxx xxxx xxxxxx xx xxx xxxx xxxxx xx xxx 
xxxxx xxxxx xxx xx xxxxxx xxxx xxx xx x xx xx 
x xxx xxx xxxx xxxxx x xx xxx xxxx xxxxx x xx    
xxxxx xxxx xxx xxx xxxxx xxxx xxx xx x xx xxx 
x xx xxx xxxx xxxxx x xx xxx xxxx xxxxx x xxx 
xxxxx xxxx xxx xx xx xxxxx xxxx xxx xx x xxxx    
x xx xxx xxxx xxxxx x xx xxx xxxx xxxxx x xxx 
xxxxx xxxx xxx xx x xxxxx xxxx xxx xx x xx xx 
x xx xxx xxxx xxxx x xx xxx xxxx xxxxx xxxxxx    
xxxxx xxxx xxx xx x xxxxx xxxx xxx xx x xx xx 

Notice: 
1.    No control characters or extended ASCII. 
2.    No blank lines. 
3.    No center justification. (Is left justified) 
4.    No bullet format. 
5.    No leading spaces. 
6.    Must be called FILE_ID.DIZ 

This is a poorly-constructed DIZ file: 

EIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII" 
o Washington, DC area BBS list    Feb 1, 1994 o 
o 577 -    BBS numbers verified monthly              o 
o                17 down - 24 new local #s                    o 
o    16 -    Non-Metro                                                    o 
o                                                                                      o 
o Non-metro sysops need to validate their      o 
o listing or be deleted. See SYSOP.DOC file.o 
EIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII    
verification by Mike Focke                    2/1/94 

1.    Extended ASCII 
2.    Contains information that says nothing of the file. 
3.    Large quantities of wasted space. 

Here's the 80-column format if the upload processor assumed the DIZ was correct: 

DCBB0294.ZIP      118807    01-31-94 xEIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII" o 
Washington, DC area BBS list    Feb 1, 1994 o o 577 -    BBS numbers verified 
monthly              o o                17 down - 24 new local #s                  o o    16 -    Non-Metro 
o o                                                                                      o o Non-metro sysops need to 
validate their      o o listing or be deleted. See SYSOP.DOC    file.o EIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII    
verification by    Mike Focke              
      2/1/94 

Here is a well-constructed DIZ file: 

PERSONAL CALENDAR v14.62 <ASP> - TSR PIM. 



Contains a printable appointment reminder 
(tickler), clock, scrollable calendar, 
notepad, and historical track.    Deluxe, 
flexible, friendly Personal Information 
Manager, runs as normal program or stable, 
environment sensitive 6K byte TSR. -AV by 
Author, Paul Munoz-Colman.    From FunStuff 
Software $35.    DOS 6 and OS/2 compatible! 

1.    The most critical information in first line, next most critical by line 2, rest of critical 
information by line 4. 
2.    It's an informative paragraph, not bullet format. 
3.    It's NOT ABUSIVE TO THE EYES WITH ALL CAPS except for the program name and 
version, where this is strongly recommended! 
4.    It tells who it's from and the price. 
5.    It's not hard to reformat to 80 column format. 
6.    The ASP is in angle brackets. (More users search for this string than any other when 
seeking ASP files. I recommend ESC use a similar default.) 

Here is the basic format for programs that require more than one ZIP file: 

            First DIZ: 

Periodic Table 2.02 <ASP> Win3.1 (1of2) 
The ultimate periodic table.    It shows 
all 110 chemical elements.    Gives over 30 
data items for each one.    View element 
details on multiple elements via its MDI 
interface. It has data on over 800 
isotopes and can display radioactive 
decay trees for over 500. It has a quiz 
mode to test your knowledge. 

            Second DIZ: 

            Periodic Table 2.02 <ASP> Win3.1 (2of2) 
            The ultimate periodic table.    See disk 1 
            for details. 

or 

Periodic Table 2.02 <ASP> Win3.1 req (2of2) 

Vol 3, No 6, December 1994        
      Main Menu 



GOING    COMMERCIAL 
Bert Fischer 

 As some of you are aware through the ESC forum, we are bringing our first commercial 
program to the marketplace (doing all the work and distribution ourselves). One of the first 
thoughts you should have is: How do I want to package this product and how much space 
will it require (how many diskettes or CDs)? In our case the packaging will be a jewel case 
which will hold one HD diskette. This has provided us a very professional package. 

Some drawbacks are 
1. The manual can only be 24 pages (including cover) and the size is limited to 
approximately 4 1/2 x 4 3/4. 
2. The jewel case will hold a maximum of two high density diskettes. If you need more 
room and a CD is not going to work for you than you must go to a box. 
3. Most people are used to seeing a CD inside this type of container (it must be clearly 
labeled NO CD), although more companies are starting to use this method. 
4. Room for additional information inside is limited. 

Some advantages are: 

1. The manual can have full color printing on the cover, which in turn is used for the cover 
of the container. Printed on a standard 8 1/2 x 11 page, they can be placed two up. This is 
less costly. 
2. The back cover can be full color which can be printed two up on a standard 8 1/2 x 11 
page. 
3. The manual and diskette stay together in a nice small package for easy storage. 
4. It's easy to ship in a small cardboard container. 
5. Filler is not required to take up additional space when your manual and diskettes do not 
fill the box. 

These are just a few things to think about when looking into the packaging. As more 
manufacturers start using a jewel case for floppy-based programs, they will become more 
accepted and familiar on store shelves (they are already starting to appear in stores like 
Egghead). 

A few other things to think of are the individual costs of each item, color printing of manual 
covers, printing the manual, diskette labels and duplication, registration card printing, 
license agreement printing, color printing of a box, final assembly and shrink wrap. If you do 
not have the time to assemble the complete package, there are companies that specialize in
supplying you with a complete package. 

I'm sure by now you want some pricing information about using a jewel case. Depending on 
what you add to the package the price is anywhere from $2.50 to $5.50 per package in 
quantities of 2500. This would include a 24 page manual (full color cover), full color art on 
back, registration return card, license agreement, duplicated HD diskette, diskette label (two
color), jewel case with floppy insert and shrink wrapped. It does not include the color 
separated film for printing, artwork or printing masters. These are separate costs which 
should be spread over the life of the product if nothing in the package changes. 

Do not put things like version numbers on the printed package. If you must have a version 
number on your package have some small labels printed separately and stick them on the 
outside of the box before shrink wrapping. This will save on the cost of having new artwork 



and reprinting new covers. Printed version numbers will not allow you to reuse any left over 
containers. Make your artwork on the package as generic as possible so it can be used over 
several versions or until you want it changed. 

One other thing to look at is: What can be included in my package to make it a bit more 
attractive (if there is room)? In our case we have made arrangements with a font developer 
to include 10 Truetype fonts with our software. Now you are also faced with a royalty to pay 
to a third party for every package sold. This can become an accounting nightmare if you are 
not prepared. It does, however, add more value and appeal to the overall package. 

Now that we have looked a bit into packages, printing, and additional files, let's take a quick 
look at advertising. This is where most of you will get sticker shock, if you have not done any
advertising before. The basic cost per a 1/6 page B/W ad in a major magazine is 
approximately $800 per issue, depending on the length of time your ad stays in that 
publication. You can't say a lot of words in this space, so you have to try to say as much as 
you can and try to make it as positive as you can to attract customers. If you think you want 
to go with a full page, full color ad you are now looking in the neighborhood of $16,000 per 
issue. Ads between 1/6 page B/W to full page, full color fall somewhere between the above 
two figures. As you may now have noticed, advertising can get very expensive, so you must 
try to pick the magazines that you think will have the most benefit for your product. Also 
remember that when you place your ad in a magazine it normally takes two to three months 
before your ad appears (this may vary from magazine to magazine). Try to time the 
production of your product so it will be ready at least a month before the ad appears so you 
are ready to take orders and ship your product. 

The initial cost to produce the first 2500 copies and have them delivered to your door step is
going to be between 6 to 12 thousand dollars depending on the artwork, packaging and how
much of the work you do yourself. This does not include advertising, and mailings. Be 
prepared to set aside about 200 to 500 copies of your first production run to send to 
distributors and reviewers. Don't forget, this is free advertising if you can get your program 
reviewed in a magazine. 

Some things we have not covered. Do you have an 800 number to make it easy for 
customers to call using a credit card? Do you take credit cards? Who will take your orders? 
What should the retail price of your product be? What should the vendor price be? Where are
the discount lines for quantities? How will you ship your product to the customer? Is your 
accounting set up for invoicing and returns? Do you have a place to store all those shrink 
wrapped packages you just paid for? Package artwork (don't scrimp in this area), press 
releases and reviews are also in there. 

So as you can see, there are a lot of things to think about in bringing a product to the 
commercial side of the fence. However, you do have one thing working for you in that your 
shareware program can also be used to advertise your commercial program. If your 
shareware program is distributed widely, you already have some name recognition. You have
an established customer base to start with. Send them a flyer of your new program and give 
them a discount. If they liked your shareware program enough to register they will probably 
purchase your retail version if given a good price. When establishing an upgrade price, 
consider that they have already paid you once for your shareware version. You should think 
about giving taking something close to the price they paid for the shareware registration off 
the upgrade price. 

Beg, borrow or purchase mailing lists or labels. Most of all, be prepared to spend lots of time 
making contacts with distributors, stores and whoever or wherever else you think can sell 
your product. 



Vol 4, No 2, April 1995        
      Main Menu 



INTRODUCTION    TO    THE    INTERNET 
Rosemary West 

 The Internet (originally called ARPANET) began in 1969 as an experimental project for the 
Advanced Research Projects Agency (ARPA) of the U.S. Department of Defense. A network 
originally consisting of only four computers, its purpose was to allow communication 
between grant scientists. By 1972, 50 universities and military research sites had access to 
the network. 

An important feature of the network's design was its ability to use many different routes 
among the computers, so that messages would not be limited to fixed paths to reach their 
destinations. If one computer broke down, the others could still talk to each other. So that all
the computers could speak the same language, the designers developed a communications 
protocol called Transmission Control Protocol/Internet Protocol (TCP/IP), which became the 
Internet standard in 1983. 

During the 1980s, many other public and private networks became interconnected through 
the Internet. Today, the Internet includes academic, government and commercial networks 
all over the world. With the increasing presence of local access providers and easy-to-use 
software, the system has become available to anyone with a personal computer. Current 
Internet features include email, FTP, Telnet, Usenet, Mailing Lists, Gopher, and World Wide 
Web. 

      Email: One of the most important benefits of the Internet is email (electronic mail). From 
an Internet site or online service such as CompuServe, it is very easy to exchange messages
with anyone else who is connected. 

      FTP: File Transfer Protocol refers to the ability to transfer files from one computer to 
another, much like downloading from a BBS. Many FTP sites allow "anonymous" access, 
which simply means that you do not have to have an account with the host system in order 
to gain access to files. 

      Telnet: Telnet increases the amount of access you have to a remote computer, allowing 
you to run programs on the host system. 

      Usenet: Usenet is a collection of discussion groups, called newsgroups. People post 
articles and responses in the groups, and each day this material is copied to computers all 
over the Internet. You can select topics of interest and pick the articles you want to read. 

      Mailing Lists: These are similar to newsgroups, but are sent through email to list 
subscribers. 

      Gopher: This is a series of menus that lets you browse through Internet sites for access 
to information, files and utilities. 



      World Wide Web: In a radical departure from the menu-based approach of Gopher, the 
Web is a series of hypertext pages which may include graphical images, sounds and 
animation. You click on highlighted words or pictures to jump directly to different information
sources. The Web includes access to FTP and Gopher. 

There are many software packages for browsing the Web. Many of them are shareware, or 
are included when you establish an account with an access provider. Popular titles include 
Mosaic, NetScape, and NetCruiser; these and others are often bundled with books about the 
Internet. If you have a CompuServe account, you can access the Net using CompuServe's 
NetLauncher software. America Online also has plans to introduce full Internet access to its 
subscribers. 

Typically, access providers charge a monthly fee which includes a certain amount of online 
time, with additional time billed at an hourly rate. Sometimes the monthly fee includes a 
small amount of space for your own "home page". Many providers will also rent space for 
your own FTP site. Fee structures for commercial use vary widely and can run into hundreds 
or thousands of dollars per month, so if you are considering creating an Internet location for 
your business, shop carefully. 

Vol 4, No 3, June 1995        
      Main Menu 



BACK    IN    BUSINESS 
Andy Motes 

 Last year my shareware business was so bad that I decided to get out of the shareware 
business completely.    My registration rate had lowered to a point that my new versions were
bringing in about 15 registrations the first year.    I decided there was nothing left to lose by 
dropping my ASP membership and crippling my software.    I should have done it years ago. 

I wrote a new version of School-Mom and distributed the complete program.    However, I 
fixed it so that after 15 uses and 15 days it would quit.    In other words, the customer has to 
have it for at least 15 days and have at least 15 uses before it quits.    When it quits, a 
message appears stating that the initial evaluation period has ended and gives instructions 
for purchasing the software. After I receive the money I send the instructions for getting the 
program started again.    The instructions include a registration number that is calculated 
from the owner's name.    The owner has to type his/her name and this special registration 
number into the initial screen before the program will run again.    After this is done once, a 
register.dat file is created and it's no longer necessary to enter the registration number -- 
the program will work forever. 

I have had no complaints from customers. Actually, I've had lots of good comments about 
how fair and sensible it is.    And more important, that new version that I distributed less than
a year ago is now outperforming all my old versions that have been out for years.    My 
registration rate is up and my overhead is lower because all I do is send a small instruction 
sheet with the customer's registration number.    I no longer write shareware, I write 
trialware.    I'm back in the software business. 

Vol 4, No 3, June 1995        
      Main Menu 



TIP    -    DESIGNING    WITH    COLOR 

 The inventor of computer-based education software ends up wearing many hats.    This 
person must become an instructional designer, market research analyst, programmer, 
psychologist, software configuration specialist, subject matter expert (sometimes 
affectionately called a "SMEE"), animator, and graphics designer. 

The key to graphics design is selectivity.    The color design of a product should integrate with
the objective of the product.    Some colors invoke symbolic or emotional responses.    Color 
harmonics is a mathematical formulation of two-color combinations to define the best 
combinations. 

Do not try to use all fonts and colors just because they are available.    Sometimes just black 
and white make sense.    Don't produce an Angry Fruit Salad unless this is your intent.    AFS 
is an interface design that uses too many colors, suggesting a bizarre canned fruit cocktail. 

Lauren Gascoigne 

Vol 1, No 2, 1992        
      Main Menu 



THE    NEXT    CENTURY 

 If your software uses dates, it is not too soon to start re-designing it for the year 2000. 

Most current PC's will accept system dates between 1980 and 2099, and many applications 
have the ability to handle a much broader range of dates. However, the software's ability to 
"understand" that a year is outside the 1900's usually depends on its being entered as a 
four-digit year, rather than as a two-digit abbreviation. 

Try this at your DOS prompt: Use the DATE command to enter 12-31-2095. The next time 
you enter the DATE command, your PC will probably tell you it's Saturday 12-31-2095. But if 
you enter the DATE as 05-11-95, DOS will assume you mean Sunday 12-13-1995. If you 
enter 01-01-2050, DOS will accept it, but if you enter 01-01-50, it will tell you that's an 
invalid date, because it assumes you mean 1950, and it won't take a date earlier than 1980. 

Except for software that deals with historical dates, your programs probably expect users to 
enter the date in two-digit rather than four-digit format. Even if the system date is correctly 
set to 2000, when you enter 00 as the date, most of these programs will either reject it or 
assume you mean 1900. 

Another problem will be date sorting and range checking. If your program sees 12/31/99 and
01/01/00, it will assume that the "00" date comes before the "99" date. This may not be 
true. 

This is going to cause a lot of problems for a lot of people unless they get their software 
updated between now and then. There's plenty of time, but for some businesses using large,
complex systems, this may be very expensive. It may also become an issue for shareware 
authors whose old versions continue to circulate for many years. For those who have not 
done so already, now is a good time to start releasing versions that can cope with the new 
millennium. 

Rosemary West 

Vol 4, No 5, November 1995        
      Main Menu 



TIP    -    SHARING    INCENTIVES 

 This is one area where we can really help each other.    A nice incentive is to include in your 
registration packet a copy of another educational shareware program written by an ESC 
member.    Another is to provide a coupon for $5 or $10 off the registration price of another 
program by an ESC member. 

Exchange shareware disks with another member and include it in your registration packet 
along with the coupon. Remember, always give a time limit for how long the deal is good.    If
the customer has an incentive to act immediately he is more likely to purchase. 

Andy Motes 

Vol 1, No 3, September 1992        
      Main Menu 



SPACE-SAVING    TIP 

 I was working on a program that saves "setup" and "high score" files to disk and it struck 
me that I had a lot of little files eating up disk sectors.    I converted them to one large setup 
file with over 50 entries and a master "high score" file.    The result was a single disk sector 
(2k on my hard disk) for each file.    This is much less than the 30 or so files of 2k each.    The 
code was simpler also.    Remember that DOS lists the size of the file when you ask for a DIR 
but not the actual disk space allocated. 

John Gallant 

Vol 1, No 6, January 1993        
      Main Menu 



CD-ROM    AUTORUN 

 Under Windows 95, it will be possible to have a CD-ROM start playing automatically as soon 
as a user pops it into the drive. Everyone should add this capability to both DOS and 
Windows CDs now, by including a text file called AUTORUN.INF in the root directory of each 
CD. 

The first line of the file is the word "autorun" in square brackets, like this: [autorun] 

The second line is the name of the program or batch file to be run, followed by optional 
command parameters. For example: 

            [autorun] 
            open = mygame.exe 

This will cause mygame to run when the disk is placed in the CD-ROM drive.    You can add 
additional parameters with the "shell" command to create a Windows menu. For my CD, I've 
used these lines: 

            shell\go = &Go 
            shell\go\command = menu.bat 
            shell\nosound = &No Sound 
            shell\nosound\command = nosound.bat 
            shell\help = &Help 
            shell\help\command = notepad readme.txt 

This creates a Windows menu that looks like this: 
            Go 
            No sound 
            Help 

If the user chooses Go, then my menu.bat runs. If the user chooses No Sound, then my 
alternate nosound.bat program runs. If the user chooses Help, then notepad is invoked with 
my README file. The & in front of the letter defines a shortcut key (e.g. user can type G, N or
H). 

Note that "shell\go = &Go" defines the menu item and shortcut, while "shell\go\command = 
menu.bat" attaches a program to the menu. The words after shell\ (go, nosound, help) can 
be anything you want as long as you use them both in defining the menu item and attaching
the program to the menu item. SHELL and COMMAND are the reserved words. Don't use the 
word "menu" immediately after "shell\". 

It is good practice to have your application come up and immediately offer the user a way 
out. Ideally, you should have a title screen come up with three choices at the bottom: Setup,
Play, Quit. That way users can get out fast if they don't want the program to start. 
Karen Crowther 

Vol 4, No 3, June 1995        
      ESC CD-ROM 

      Main Menu 








